
Poster: All Right Then, (Don’t) Keep Your
Secrets: Exposing API Hashing in Malware

Nicola Bottura1, Giorgia Di Pietro1, Yuya Yamada2, Daniele Cono D’Elia1,
and Leonardo Querzoni1

1 Sapienza University of Rome, Italy
{bottura,g.dipietro,delia,querzoni}@diag.uniroma1.it

2 Nara Institute of Science and Technology, Japan
yamada.yuya.yy@gmail.com

Abstract. Modern malware employs disparate anti-analysis techniques
to complicate analysis attempts. Among them, API hashing conceals the
identity of imported library functions—key indicators for understanding
malware behavior—by replacing their standard names with hashed val-
ues. Currently, resolving these obfuscated calls relies heavily on manual
expertise and community-maintained hash repositories, both of which
are time-consuming and difficult to scale. In this work, we explore an
automated approach to deobfuscate API hashing. By leveraging dynamic
program analysis, we identify and map hash values back to their origi-
nal function names while also extracting information about the hashing
scheme. Our method can then use malware itself as a “hash oracle”, en-
abling on-demand resolution of standard function names through the
malware’s hashing logic, enabling automatic updates of repositories.

1 Introduction

When analyzing untrusted software for Windows platforms, the contents of the
Import Address Table (IAT) allow analysts to make educated guesses about
its capabilities. In fact, the identity of the APIs the executable references can
provide valuable insights into the functionality of suspicious code. Beyond aiding
in capability assessment, IAT content analysis also plays a key role in clustering
malware samples and correlating threat group activities. As an example, the list
of imported APIs has been used to track custom backdoors employed by specific
actors [5]. Therefore, IAT contents are precious for static analysis efforts.

To hinder such analysis, malware authors have developed various API ob-
fuscation schemes [2]. With dynamic API resolution, instead of being imported,
functions are resolved only at run-time, typically using standard facilities like
LoadLibrary and GetProcAddress [3]. However, these techniques are well-known
to experts, and many modern analysis tools can disambiguate them.

A more advanced technique that significantly complicates static analysis is
API Hashing. Instead of using standard resolution methods, which need the
sample to materialize API names as strings in memory, malware can store hashed
representations of these names and use these values to look up API addresses



2 Bottura et al.

covertly. During execution, a sample scans all the functions exported by the
loaded libraries, computing the hash of each symbol using a custom algorithm.
These hashes are then compared against one or more pre-computed values. When
a match is found, the desired function address has been solved. This complicates
not only automatic analysis, but also manual reverse engineering attempts.

To combat API hashing, analysts often rely on their expertise and accumu-
lated knowledge to recognize API hashing techniques. However, comprehensive
documentation remains limited, with only a handful of practitioner blog posts
in recent years offering insights through case studies [7,4]. A community-sourced
online repository [6] maintains a collection of hashing algorithms observed in
malware, along with precomputed hash tables for Windows APIs and other com-
mon strings. While helpful, this resource lacks automation and struggles to keep
pace with the evolving landscape of hashing techniques, as even minor changes
to a hashing scheme can render these tables obsolete. This variability—where
readable API names are replaced with seemingly arbitrary hashes—impairs tra-
ditional reverse engineering approaches and highlights the growing need for au-
tomated solutions to support deep and accurate malware analysis.

This work explores a solution that enhances the analysis of malicious code
without relying on manual investigation or expert intervention. Since API hash-
ing obstructs static analysis and complicates accurate inspection of affected
samples, our approach leverages dynamic program analysis to extract valuable
information in a lightweight and generalizable manner. This can enable auto-
mated, scalable deobfuscation if the dynamic analysis comes with tenable costs.
Along these lines, to support the continuous updating of community-maintained
hash tables—and to provide analysts with more comprehensive data—we pro-
pose leveraging the extracted information to transform the malware itself into
a “hash oracle”. By emulating the sample’s hashing logic and injecting arbitrary
strings at the point where function names are typically resolved, this method
allows for computing hashes using the malware’s own code. This eliminates the
need for manual reverse engineering to recover the API hashing logic.

2 Background

API hashing typically involves traversing the internal structures of Dynamic-
Link Libraries (DLLs) to locate their export tables [3]. Once these tables are
identified, the malware iterates through the list of exported function names,
applying a custom hashing algorithm to each one. When a hash matches a pre-
computed target value, it indicates that the current API name corresponds to
the obfuscated target function. At that point, the malware dynamically resolves
the function’s address by referencing its position in the export table, accessing
the DLL’s structure that maps function names to their corresponding addresses.
A simplified version of this logic is provided in a snippet of C code in Listing 1.1.

Line 2 retrieves the name of the current API by using the DLL’s base ad-
dress and the name offset, while line 3 computes the hash of the API name
using a custom algorithm. Line 5 checks whether the computed hash matches



Exposing API Hashing in Malware 3

1 for (i = 0; i < NumberOfFunctions; i++) {
2 api_name = (char *)(base + AddressOfNames[i]);
3 curr_hash = HASHING_FUNCTION(api_name);
4
5 if (curr_hash == pre_cmptd_hash) {
6 api_addr = (PDWORD)(base + AddressOfFunctions[

AddressOfNameOrdinals[i]]);
7 return api_addr;
8 }
9 }

Listing 1.1. C code snippet for exemplary API hashing loop.

a precomputed hash; if a match is found, line 6 resolves the actual address of
the obfuscated API. Notably, this method is not limited to API names: malware
can apply a similar approach to obfuscate DLL names, traversing the Process
Environment Block (PEB) to enumerate and hash loaded module names.

A core aspect of the API hashing technique is the use of indicative offsets
from a DLL’s base address to reference the offsets—Relative Virtual Addresses
(RVAs) in Windows terminology—of key fields used for resolving API calls at
runtime through API hashing. When deploying API hashing, malware writers
typically maintain their own IAT-like array with the API addresses that they
solve dynamically upon execution startup using the method above.

3 Proposed Approach

Manually reverse-engineering a binary that employs API hashing is a highly com-
plex task. The presence of additional obfuscation layers can further complicate
the process, making a complete analysis even more challenging. Even when no
extra obfuscation is present and hash tables assist in deobfuscation, the process
may still fall short: malware can implement customized or entirely new hashing
algorithms that evade traditional analysis methods. To address this, we are cur-
rently exploring an automated solution that operates by inspecting accesses to
DLL memory that are a precondition for any hashing mechanism.

As exemplified in Listing 1.1, API hashing relies on two key operations: (1)
computing the API name, where the sample retrieves each plaintext function
name from DLL memory, and (2) resolving the address of the obfuscated API
name once found. Our approach focuses on identifying the instructions respon-
sible for extracting these two critical information items. The code encompassing
these two operations defines a program slice with the following properties:

1. The hashing computation occurs within this slice;
2. At some point, a successful match between the current hash and a precom-

puted one occurs (e.g., a cmp instruction with identical incoming operands);
3. The slice reaches its endpoint (symbol resolution) only after a found match.

Building on these properties, we developed a prototype solution that operates
in three distinct phases (Figure 1), each needing some code (re-)execution.



4 Bottura et al.

Fig. 1. Workflow of the proposed approach.

Phase 1: Extracting the API Hashing Program Slice. The first step focuses
on identifying the code region responsible for the API hashing mechanism. This
is achieved by detecting instructions that access DLL memory offsets viable to
retrieve API names and addresses. By applying program slicing, we isolate a
smaller, more relevant portion of the code, significantly narrowing the search
space for hashing functions. This not only improves efficiency but also enables
further analysis by leveraging the specific characteristics of the extracted slice.

Phase 2: Identifying Hash Candidates. With the program slice defined, the
next step is to trace the operands of all comparison instructions within its bound-
aries. When a correct hash is eventually produced, execution reaches the slice’s
endpoint indicating a successful match. Although the exact hash value may still
be unknown at this stage, we can postulate that one of the comparison opera-
tions in the slice must contain the correct hash as one of its operands, whereas
the other operand will vary every time the samples moves to the next API name.

Phase 3: Identifying the Hash Function. Malware API hashing algorithms
generally operate through a sequence of instructions that progressively modify
a plaintext string, with the final iteration producing the hash value. To pinpoint
the possible locations of the hashing function, we focus on arithmetic instructions
commonly involved in these operations. To pursue generality, we do not assume
that the hash value is returned by a function. On the contrary, by narrowing the
scope to a smaller set of relevant instructions, we can map the resulting hash
value back to the code sequence that generated it.

The insights gained from this analysis let us directly address a second major
challenge: automating the community task of hash table creation and updating.

Currently, this process relies on manual reverse engineering to extract the
hashing function, which is then submitted to the HashDB [6] service for up-
dates. Due to the recurrent complexity of deobfuscating malware, analysts often
resort to best-effort decompilation of the executable and sketch from there a
Python implementation the original semantics for independent use. However,
this method may incur the pitfalls of incorrect decompilation or manual follow-
up translation. Additionally, it requires manual identification of hashing code.

We envision a solution that leverages the information gathered during the
three phases above to orchestrate a controlled execution of the code in an em-
ulator. This would let us use the malware itself as an on-demand hash value
generator, collecting the hash value at each traversed DLL function symbol.
This approach eliminates the need for costly reverse-engineering techniques to
manage the hashing loop and to compute hash values.



Exposing API Hashing in Malware 5

Phase 1 Phase 2 Phase 3
Slice
start

Slice
end

Compare
value

Hash
value

Hash
functionFamily Sample

BlackMatter 50c4970003a84cab1bf2634631fe39d7 ✓ ✓ ✓ ✓ ✓
BlackMatter v2 d0512f2063cbd79fb0f770817cc81ab3 ✓ ✓ ✓ ✓ ✓
Conti bc92ea510a5630c770d9443be4b40fde ✓ ✓ ✓ ✓ ✓
Emotet 68c76c3403570a22ce7a60a1b68d9056 ✓ ✓ ✓ ✓ ✗
Lockbit 628e4a77536859ffc2853005924db2ef ✗ ✗ ✗ ✗ ✗
Netwalker 73de5babf166f28dc81d6c2faa369379 ✓ ✓ ✓ ✓ ✓
Revil 890a58f200dfff23165df9e1b088e58f ✓ ✓ ✓ ✓ ✗
Zloader 5c76c41f9d0cc939240b3101541b5475 ✓ ✓ ✓ ✓ ✓

Table 1. Outcomes from sample analysis for the different stages of API hashing.

Discussion. In dynamic analysis scenarios, such as with a sandbox or antivirus,
API interposition can reliably expose API call targets [3]. On the contrary, meth-
ods that rely on static information need other ways to address the challenges
from API hashing. We try to bridge this gap using lightweight dynamic analysis.

The problem we investigate overlaps with what some program analysis tech-
niques can offer. Taint analysis [8] can trace data from API names (sources) to
hash comparisons (sinks), but its high overhead and susceptibility to imprecision—
especially with malware code—limit its practicality. Input-to-state correspon-
dence analysis [1] may be more tenable, but struggles when inputs do not directly
map to resulting states. Hence, neither can directly untangle API hashing.

One limitation of our method lies in possibly large program slices when the
hashing and comparison operations occur in separate loops. While this may im-
pact performance, it does not reduce overall effectiveness, as the key instructions
related to the hashing mechanism are still captured. Another challenging aspect
may involve Phase 3, whenever multiple stack locations may be flagged as po-
tential hash function sites (i.e., false positives). Despite this, when the correct
hash value is identified in Phase 2, the method still supports effective analysis,
even if the exact location of the hashing function remains uncertain.

4 Preliminary Results

To evaluate the feasibility of our approach, we conducted a preliminary assess-
ment by developing a prototype implementation of our design, using the Dynamic
Binary Instrumentation (DBI) capabilities of the DynamoRIO framework. The
prototype covers the three phases of our method, whereas we are currently work-
ing on the emulation part to orchestrate executions from a snapshot.

Our initial testbed comprises eight samples drawn from popular families, such
as Emotet and NetWalker, that notoriously utilize API hashing techniques. For
each sample, we had access to auxiliary documentation and annotations from
blog posts analyzing those specific samples, with a particular focus on their API
hashing methods, enabling us to validate the accuracy of our prototype’s output.

We consider a result successful if the prototype can: (1) correctly identify
the relevant code slice, (2) locate the comparison instruction involving the hash
values, and (3) recognize the underlying hash function.



6 Bottura et al.

The results are summarized in Table 1. Out of the eight samples, the proto-
type failed to produce any result only for Lockbit, due to a crash we suspect is
related to a DynamoRIO bug and are further investigating. Among the remain-
ing seven samples, the results were generally promising, with a few exceptions.
In two cases, Revil and Emotet, the prototype failed to correctly identify the
hash function. In both instances, the hash value was located within one of the
instructions typically used by malware to transform the plaintext string during
hashing that we look for in Phase 3. This is indicative that the hashing process
is distributed across multiple functions not linked by internal calls from one an-
other, presenting a challenge for our current analysis prototype. Since the hash
value is not observed within a single isolated function, our prototype cannot
reliably identify the complete hashing logic. This limitation warrants further in-
vestigation. On the bright side, for both versions of BlackMatter, which performs
API hashing also on DLL names, our prototype operated successfully in full.

5 Conclusion

We have proposed an automated approach for analyzing API hashing mecha-
nisms in Windows malware. Once mature, our prototype may remarkably ease
ongoing community-driven efforts in this domain. As a next step, we aim to
extend it by addressing its current limitations in the identification of the hash
function and evaluating its performance on a larger set of malware samples.

This work has been partially supported by projects SERICS (PE00000014)
and Rome Technopole (ECS00000024) under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGenerationEU.

References

1. Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: REDQUEEN:
Fuzzing with input-to-state correspondence. In: NDSS (2019)

2. Cheng, B., Ming, J., Leal, E.A., Zhang, H., Fu, J., Peng, G., Marion, J.Y.:
Obfuscation-Resilient executable payload extraction from packed malware. In:
USENIX Security Symposium. pp. 3451–3468 (2021)

3. D’Elia, D.C., Nicchi, S., Mariani, M., Marini, M., Palmaro, F.: Designing robust
API monitoring solutions. IEEE Transactions on Dependable and Secure Computing
20(1), 392–406 (2023)

4. Gupta, N.: API hashing - why malware loves (and
you should care), https://securitymaven.medium.com/
api-hashing-why-malware-loves-and-you-should-care-77c5135d9aaa

5. Mandiant: Tracking malware with import hashing, https://cloud.google.com/
blog/topics/threat-intelligence/tracking-malware-import-hashing/

6. OALabs: Hash db, https://github.com/OALabs/hashdb
7. Red Team Notes: Windows API hashing in malware, https://www.ired.team/

offensive-security/defense-evasion/windows-api-hashing-in-malware
8. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE Symposium on Security and Privacy. pp. 317–331 (2010)

https://securitymaven.medium.com/api-hashing-why-malware-loves-and-you-should-care-77c5135d9aaa
https://securitymaven.medium.com/api-hashing-why-malware-loves-and-you-should-care-77c5135d9aaa
https://cloud.google.com/blog/topics/threat-intelligence/tracking-malware-import-hashing/
https://cloud.google.com/blog/topics/threat-intelligence/tracking-malware-import-hashing/
https://github.com/OALabs/hashdb
https://www.ired.team/offensive-security/defense-evasion/windows-api-hashing-in-malware
https://www.ired.team/offensive-security/defense-evasion/windows-api-hashing-in-malware

	Poster: All Right Then, (Don't) Keep Your Secrets: Exposing API Hashing in Malware

