
PFUZZER: Practical, Sound, and Effective Multi-path Analysis of
Environment-sensitive Malware with Coverage-guided Fuzzing

Nicola Bottura, Daniele Cono D’Elia, Leonardo Querzoni
Sapienza University of Rome

{bottura, delia, querzoni}@diag.uniroma1.it

Abstract—Among the behaviors and tactics that malware can
exhibit, environment-sensitive logic likely poses the longest-
standing challenge to the analysis capabilities of automatic
systems such as sandboxes. Current analysis approaches ei-
ther fall short in anticipating adversarial tactics by design, or
incur prohibitive costs and other roadblocks when reasoning
on real-world code. As a result, manual analysis remains the
primary way to identify behaviors that show only when a
machine meets specific expectations of the sample.

To address these issues, we present the first practical,
sound, and effective solution for multi-path exploration of
environment-sensitive malware. We argue how the popular
coverage-guided fuzzing paradigm from software testing can
effectively achieve this task, provided we can devise original
design solutions (such as coverage feedback and environment
mutations) tailored to the unique characteristics of malware
to enable this application. Our approach not only can disarm
many evasions without requiring expert knowledge, but also
unveil additional activities that would not show in a baseline
run due to environmental conditions unrelated to evasion.

We build a manually annotated dataset of environment-
sensitive malware and use it to estimate the analysis ca-
pabilities of the approach. Our PFUZZER implementation
reveals activity that the best competitor misses for 36.09%
of the samples: such activity either follows evasions that
deceive existing systems or comes from behaviors that show
only in other “right” environments. PFUZZER also unveils
dormant evasive tactics for 70.64% of the samples that one
may wrongly deem as non-evasive after a baseline run.
Index Terms—Malware, evasion, fuzzing, anti-analysis.

1. Introduction

Malware historically represents a critical threat in the
cybersecurity landscape. To examine the behavior of an
untrusted executable, being static analysis alone often
inconclusive, modern defense approaches employ dynamic
analysis for execution inspection and tracing. Many so-
lutions assume that a single execution is sufficient for
characterization [1], but this easily becomes a slippery
road in the presence of environment-sensitive malware.

Environment-sensitive malware can show relevant be-
havioral differences depending on the characteristics of the
machine where it runs. With the so-called evasive mal-
ware, nowadays increasingly prevalent [2], [3], samples
may elude analysis through, for example, early termina-
tion if they recognize distinctive features of analysis envi-
ronments. However, behavioral differences may also origi-
nate from operational characteristics of the machine, either

for abusing them (for example, a specific process for data-
stealing malware) or as a distinctive feature of intended
victims for targeted malware. While researchers have been
tackling these problems for well over a decade [4], this
type of malware still strongly challenges current defenses.

We can divide current approaches in two kinds: ap-
proaches that build increasingly transparent environments
by removing artifacts known to tip off evasive malware,
and approaches that study how the instructions from the
sample interact with information from the environment
and try to force alternative decision outcomes. All these
approaches may be limited in the type of fingerprinting
techniques and decision logics they can handle, require
manual extensions to face new techniques, or face scala-
bility barriers that hinder their use on real-world malware.

We find all these issues to root into two methodolog-
ical pitfalls: relying on predetermined expectations for a
sample’s actions and attempting fine-grained analysis of
code. The former is problematic because an outcome for
an action may not fit all samples and not all actions are
foreseeable; the latter because code analysis is expensive
and adversaries can make it arbitrarily more challenging.

At a closer look, these challenges share similarities
with what software testing literature has lately done,
very successfully, with coverage-guided fuzzing for test-
ing programs. While these programs are not adversarial,
fuzzers typically do not know how an input looks like
or what makes an input good for a particular program.
However, thanks to input mutations and run-time feedback
of general applicability, they progressively learn through
a plurality of executions what a program can accept.

Readers knowledgeable in fuzzer design would argue
that, in spite of the conceptual similarities, the leading
techniques in fuzzing (from input acquisition and mu-
tations to the coverage feedback or the seed scheduling
strategies) may not be applicable to malware or likely
yield low efficacy. This paper bridges this gap by propos-
ing and evaluating techniques to unleash coverage-guided
fuzzing for analyzing environment-sensitive malware.

We first model alternative environments as an input
construction process, introducing execution policies as a
unifying umbrella to interpose and alter the course of a
sample’s accesses to environmental information sources,
enacting mutation rules that are the core of the policy.
Then, to track progress in building meaningful environ-
ments for the sample, we define a coverage feedback that
is sensitive to externally observable effects from execution
(as these characterize malware activity the most), but also
inspects code coverage to not miss any partial progress.
External coverage separately accounts for accesses to



environmental sources (as these accesses are potential
candidates for mutation) and conspicuous actions that alter
the machine state (as the presence of new actions may
suggest that some expectations were met). As we will
detail in the paper, coverage facts are also essential for us
to drive mutations and to orchestrate fuzzing scheduling.

Unlike existing multi-path proposals based on forced
execution [5], our runs are always sound: analysts or
downstream systems can apply the prescriptions from
a policy and reproduce all the behaviors independently.
Unlike suggested approaches based on symbolic execution
or taint analysis, we refrain from analyzing code, but only
observe it in a (limited) number of executions. Unlike
most existing solutions, we do not need expert knowledge
with predetermined answers or to make assumptions on
tactics, but we try to automatically synthesize the “right”
outcomes for queries using only a coverage feedback. This
gives us a solution that is practical, sound, and—as the
experimental evaluation will show—very effective, too.

To estimate the capabilities of our approach, which
we implement in a system called PFUZZER1, we build
a manually annotated dataset of 1078 samples of poten-
tially independent interest for researchers. We pick these
sample through deduplication, clustering, and reversing
work starting from 315,231 Windows malware samples
collected by qualified sources between 2018 and 2023.

We study how PFUZZER can unveil additional be-
haviors for these samples and compare its performance
with two state-of-the-art systems, BLUEPILL [6] and EN-
VIRAL [7], that build on expert knowledge. PFUZZER
emerges as the clear winner, for example unveiling con-
spicuous activity that the best competitor misses for
36.09% of the samples. This activity may originate from
evasive tactics that PFUZZER neutralizes, but more often
is additional activity that adds to the conspicuous actions
from the baseline run. Analyses based on a single run,
which are the de-facto standard [1], would likely miss the
latter behaviors. Furthermore, our method is also able to
trigger dormant evasive activity in samples that already
reveal all their malicious activity in the baseline run. Our
experimental analysis will discuss several statistics and
trends we identify for the alternative paths we unlock, and
evaluate internal performance drivers of our approach.

In summary, this paper proposes as contributions:

• A practical and sound method for analyzing
environment-sensitive malware with fuzzing;

• New designs for key fuzzer components (mutation,
coverage, scheduling) tailored to malware;

• A dataset of environment-sensitive samples with
annotations on the tactics we spotted in them;

• An experimental analysis that estimates the capa-
bilities and performance of our PFUZZER system
and provides insights on the alternative behaviors
it unveils for these samples and on key internal
aspects behind PFUZZER’s performance.

The dataset and the experimental materials from this
paper are available at https://github.com/Sap4Sec/pfuzzer/.

2. Background and Motivation

Environment-sensitive malware has been studied for
long in the security literature. Pioneering seminal works

like [4] characterize it in terms of sandbox evasion tactics:
that is, malware that is able to recognize when running in
an analysis system rather than on a real user’s machine
and thus refuses to perform its intended malicious course.
In this early literature, researchers acknowledge how it is
fundamentally impossible to build a transparent analysis
system [8]; hence, defensive research has to be mostly
reactive: once sandbox developers become aware of new
evasion tactics, they tweak their system to thwart them [4].

These researchers focus their efforts also on accurately
detecting environment-sensitive malware by looking for
meaningful discrepancies in execution behaviors among
runs attempted in multiple analysis systems [4] or using
an uninstrumented reference host [9], [10].

But even if perfect detection methods were available,
for many malware authors the goal is not to prevent man-
ual analysis of samples, but rather prevent analysts from
using popular efficient automated systems [11]. There-
fore, researchers continue to build increasingly transparent
methods that, albeit imperfect, reduce the “attack sur-
face” for evasive tactics. Solutions of this kind include
moving most of the analysis logic to privileged opaque
layers (through Virtual Machine Introspection [12]–[14]
or using System Management Mode [15]) and supplying
fake indicators in response to know evasions tactics [6].
Neither are generally reliable: for example, virtualization
artifacts [16] and timing side channels [17], [18] give away
VMI-based solutions, whereas fake indicators are effective
until adversaries come up with zero-day evasions [6].

An important aspect to underline is that environment-
sensitive malware is not necessarily evasive. While evasive
malware is important and increasingly prevalent [2], [3],
many samples choose not to show their behaviors de-
pending on characteristics of the execution environments
unrelated to artifacts from analysis systems. Notably, tar-
geted malware [19] is designed to fly under the radar and
enact its intended behavior only on machines that exhibit
distinctive characteristics known to be in place at the
intended victim’s (e.g., a company or government entity).
The solutions we discussed above for evasive malware are,
by design, incapable of handling such malware.

More interestingly, as we analyze throughout our ex-
perimental evaluation, much malware that already shows
conspicuous behaviors in a baseline run (hence, one would
not consider it evasive or targeted) can reveal additional,
and at times distinctly new, behaviors when one or more
features of the surrounding environment change. We can
think, for example, of OS version, timezone and language
information, hardware devices, running and installed ap-
plications, recently opened documents, and so on.

Multi-path exploration may thus appear as natural way
to handle general environment-sensitive malware. To date,
a few approaches have been discussed or explored for it.

One is forced execution [5], [20], which flips ev-
ery branch instruction and massages process memory
for best-effort repair of runtime errors (as random data
typically ends up into instruction operands along the
coerced paths). This approach shows valuable results for
tasks like control-flow graph recovery [5] and malware
unpacking [21]. However, it suffers from severe limita-
tions when handling general code, such as state explo-

1. The name hints at how we fuzz what a malware sample perceives.

https://github.com/Sap4Sec/pfuzzer/


sion [21], sticking to fixed paths within OS libraries [5],
and unsoundness [5] from exploring unfeasible paths. To
date, the technique has been demonstrated only on Linux
malware or ad-hoc case studies (e.g., SPECINT 2000).

Another approach is to use fine-grained program anal-
yses, such as symbolic execution and taint analysis, to
identify dependencies in malware code from environmen-
tal information items a sample retrieves at run-time. The
pioneering work of Moser et al. [22] labels inputs of
interest and tracks their propagation throughout execution,
taking snapshots at control-flow decisions dependant on a
labeled value; then, in a new execution, it uses a linear
constraint solver to try to generate a value that would flip
the branch. The method is more sound than forced execu-
tion for the feasibility of the explored paths, but is neither
fully sound nor complete. It then faces high run-time
costs and potential imprecision from the taint tracking, and
general limitations with constraint solving. Similar limi-
tations, and even higher costs, affect potential approaches
hinted around the use of symbolic execution, which recent
work deems as impractical [1]. Additionally, anti-analysis
constructs known for both program analyses [23], [24]
can further marginalize multi-path approaches that rely
on accurate modeling of code and execution semantics.

In summary, the state of the art struggles in two
respects. Solutions that conduct “single-path” analysis are
helpful (yet still limited, and needing manual tweaks over
time) against evasive malware, but cannot predict the
right answers for other types of environment sensitivity.
Solutions for multi-path analysis could potentially handle
general environment-sensitive malware, but the pitfalls
and costs for accurate modeling of code are substantial.

To tackle this conundrum, we look into cross-
fertilization opportunities with a methodology that has sig-
nificantly advanced the state of the art in software testing
in recent years, addressing challenges that, on the surface,
share similarities with those above. Through a plurality of
executions under a lightweight instrumentation, coverage-
guided fuzzing solutions learn how to build increasingly
complex inputs that reach different program parts without
requiring expert knowledge or accurate modeling of code.
Obviously, the domains and nature of programs under
analysis are very different, and as we will see malware
analysis calls for original fuzzer design techniques for
such an approach to be effective. This paper will propose
and evaluate contributions in this direction, showing how
to build a practical, sound, and effective fuzzing solution
for multi-path analysis of environment-sensitive malware.

3. Design

To tackle the challenges from Section 2, we design and
implement a coverage-guided fuzzer, PFUZZER, around
the specificities of environment-sensitive malware.
Overview. We propose a design where a fuzzer gradu-
ally mutates how the sample perceives the surrounding
environment and recognizes meaningful differences in the
sample’s execution through a coverage mechanism. As
typically with coverage-guided fuzzing, the system main-
tains a queue of alternative environments that led to previ-
ously unseen execution states and chooses between them
to generate the next environments, hoping to progressively
meet more and more of the sample’s expectations.

For such a fuzzer, the concept of input to mutate
becomes: What aspects of the environment should we alter
as the sample interacts with them? Hence, we interpose on
accesses to sources of environmental information (as with
OS APIs and certain CPU instructions), and we decide
whether to apply mutations to each of them to alter their
course: for example, to simulate the absence or presence
of a file. We term these inputs execution policies and
instantiate each policy as a set of mutation rules.

During execution, a runtime monitor realizes the in-
terposition to enact any mutation in the policy, but also to
collect a coverage feedback for the execution. The goal
is to detect whether the policy is, in fuzzing terminology,
interesting (that is, it reveals novel coverage) and thus
retain it. For each policy, we compute a significance score
to estimate the progress and an energy score to control
how often we may attempt to evolve the policy further.

A scheduler component uses the two scores to balance
exploration across different policies. This avoids that the
fuzzer is led astray by partial progress in a direction
that will eventually be inconclusive (that is, the fuzzer
can backtrack), or that it may miss alternative malicious
behaviors for different environments (for example, with
alternative tactics in the presence of particular system
configuration, running programs that may be abused, etc.).

In the following, we discuss how to build an effective
coverage feedback and soundly mutate environments, then
we move to fuzzer design and implementation choices and
discuss other methodological aspects of our approach.

3.1. Coverage Feedback

The first significant challenge to face is determining
to what extent the execution environment presented to a
sample meets the characteristics and run-time behaviors
the sample expects. This challenge is shared with virtually
all automatic approaches to malware analysis and is a hard
one to tackle because no ground truth is available.

Generally speaking, malware fingerprints an environ-
ment by accessing one or more items of environmental
information and then running at a later point a decision
code on their contents. What complicates the analysis is
that such code can be of arbitrary complexity.

In some cases, malware may act upon the retrieved
information only long after a query. Additionally, malware
may employ obfuscation and other adversarial techniques
(e.g., implicit flows [23]) to impede code analysis. Mal-
ware can also access multiple sources at once and build an
opaque summary of the results before making a decision,
acting upon the value of the summary without providing
obvious clues on what items do not meet its expectations.
Furthermore, malware can access some items without
acting upon their contents, for the purpose of deflecting
the focus of an analysis system or human operator.

All these techniques (and variants not discussed here
for brevity) further marginalize all current techniques
available for analyzing environment-sensitive malware.

In our work, we take a radically different approach. By
repeatedly massaging (as detailed next) the environment a
sample perceives, we obtain a plurality of executions that
help us estimate how we are progressing in building envi-
ronments that meet the sample’s expectations. Our goal is
to collect execution facts that are meaningful also in the



presence of adversarial tactics like those described above.
Therefore, we radically move away from prior endeavors
that study code fragments for their potential outcomes and
how to enforce them (e.g., [1], [22]) or that enact other
low-level manipulations in a similar fashion [19].

To estimate exploration progress, we define a coverage
feedback mechanism that tracks execution facts observable
at run-time with modest overhead. In the adversarial set-
ting we target, conventional feedback sources that are ef-
fective in other domains can lose efficacy or effectiveness.
For example, if we study only code coverage, a malware
writer can embed code that conditionally activates stalling
sequences or other deceptive behaviors, and uncovering
these regions may give a false sense of progress.

To comprehensively capture the execution of a mal-
ware sample, we track facts stemming from two sources:

• external coverage: information about externally
observable actions on the machine by the sam-
ple, focusing on (i) environmental queries and (ii)
changes made to the state of the machine;

• internal coverage: information on the internal pro-
gram states traversed by the execution.

External Coverage. As we mentioned, our feedback
source draws from two types of externally observable
behaviors. For the first, we track what environmental
information items the sample accesses through queries.
This includes the invocation of operating system APIs for
querying the environment (e.g., about files, processes, reg-
istry contents, hardware interfaces, timing sources, GUI
windows, and system settings) and the use of certaint CPU
instructions that provide direct access to environmental
information (e.g., cpuid and rdtsc).

For the second, we track both transient and permanent
changes brought about by sample execution to the global
state of the machine. Transient changes include, for exam-
ple, attempted network communications and the creation
of temporary IPC objects such as mutexes. Permanent
changes include creation, modification, or removal of, e.g.,
files, processes, GUI windows, and system settings.
Internal Coverage. This feedback source includes in-
formation about internal program states, such as code
portions traversed by the sample during one execution:
for example, the identity of the basic blocks covered. Op-
tionally, internal coverage may include some data flows,
such as input arguments for code whose semantics is to
compare strings or other byte sequences.
Discussion. We argue both coverage sources are helpful
and that not considering either may reduce the efficacy of
our method, due to the risk of overlooking behaviors.

If we ignore external coverage, internal coverage alone
may not suffice to suggest us if we progressed (that is, if
we met some of the sample’s expectations about the envi-
ronment). Newly observed queries may be a consequence
of how we massaged the environment, supplying the right
values to the decision logic that otherwise impedes these
queries. Changes brought about to machine state are also
a natural, and possibly stronger, indicator of progress.

Unfortunately, there are cases where newly made
queries are a decoy, or where there are no new visible
effects on the machine because the environment does
not meet yet some condition in some decision points of

the sample. Here, internal coverage can greatly aid and
inform the exploration when new parts of the sample are
gradually met (and even suggest values for massaging
the environment differently in later attempts). However,
internal coverage is not strong enough to do away with
external coverage, as it can be misled (for example, when
reaching code present in a sample only for misleading an
analysis) and can be inefficient (as it is cannot discriminate
the presence of notable interactions with the environment).

3.2. Mutating the Environment

The second significant design challenge to face is how
we can alter what a samples perceives of the environment
in a productive way for our purpose. The coverage in-
formation described in the previous section will allow us
to effectively distinguish whether a sample behaves dif-
ferently when faced with two (possibly related) different
environments. However, to be able to present a sample
with such environments, we introduce two key elements
in our design: the concept of execution policy and the
execution monitor component that we use to enforce the
execution policy and also collect coverage information.
Execution Policy. An execution policy (or policy for
brevity) is a set of rules that instructs the execution
monitor how to alter, before their retrieval, the contents
of environmental information items that the sample ac-
cesses. The goal is to provide feasible outcomes for these
queries and have the execution monitor capture through
the coverage feedback how the sample reacts to it.

A rule prescribes how to alter the normal operation of
specific accesses, for example by modifying the contents
that the OS produces in response to a query, by denying
the access, or by forging a fake result for an operation that
the system would normally deny. A rule is not concerned
with the identification of what program instructions may
act on the contents of the retrieved information.

Being a policy a set of rules, it can be empty. In this
case, the operation of the machine is unaltered and the ex-
ecution monitor only collects coverage information during
execution. Such information eventually becomes integral
to the policy: in particular, we annotate each policy with
external coverage information on the accesses the sample
makes to environmental information when executing under
that policy. Due to this choice, we are able to derive a
new policy from the current one by applying one or more
fuzzing-style mutations to the current set of rules.
Mutations. A mutation takes as input an execution policy
and the external coverage information under such policy.
Operationally, for each access recorded as coverage infor-
mation, we check whether the original policy contains one
or more rules involving the access and act accordingly.

When no such rule exists, we may nondeterministi-
cally choose to add a mutation realizing one of the options
above: that is, modifying the contents of the involved
environmental information item, denying an access that
the machine would normally allow, or forging a fake result
to simulate a successful access. However, we may also
choose not to add a mutation, leaving the access unaltered.

When one or more such rules exist, each of them
can be, if applicable, altered in its value-related contents,
replaced with another rule, removed, or left unaltered.



Mutations are designed to be aware of the structure
of the environmental information. They can add, modify,
or delete portions of the contents by means of operators
(e.g., bit and byte flipping, substitution with random or
controlled contents) that preserve the layout and type of
the involved environmental information item. Mutations
for primitive values can apply to one or more constituent
bytes, whereas for structured values—such as with a list of
files or processes—to their structure, too (by, e.g., adding,
duplicating, splitting, merging, or deleting list items).

Execution Monitor. The execution monitor component
fulfills two tasks: recording coverage information and
manipulating the operation of accesses to environmental
information items if prescribed by the execution policy.

Both tasks require interposition capabilities realizable
through standard means in dynamic program analysis.

When recording external coverage for accesses to en-
vironmental information, the execution monitor collects
not only the operation (instruction or API) behind the
access, but where it originates in the sample, what input
arguments the operation receives, and the exit status, if
applicable. We can use this information to generate rules
that, in subsequent executions, can capture occurrences of
said access and manipulate its operation as desired.

When altering the operation of an access, we ensure
that what the sample sees is a feasible outcome for a
properly configured machine. For example, if the sample
tries to access a file that does not exist, we do not simply
change the status code of the operation, but we rewire the
access to a synthetic file that we generate on the spot.
This provision mitigates the risk of spurious executions.

Discussion. An inherent focus of our design is to identify
(and, as we discuss next, further explore) states and be-
haviors of the sample under analysis that have not been
seen before. To this end, we use coverage information
and mutation rules to derive new execution policies that,
in turn, enable executions of the sample while changing its
perception of the surrounding environment at each step.

At the same time, through coverage information, we
can identify execution policies that lead to previously un-
seen internal states or externally observable actions for the
sample. Our method operates in a fully automated manner
to (i) test the end-to-end effects, on the sample under
analysis, of the values it retrieves for the environmental
information items it accesses, and to (ii) generate accord-
ingly execution policies that can expose new behaviors. As
we discuss throughout the illustration of our design, we
can achieve step (ii) by progressively learning from past
executions done under different environment policies.

The attentive reader may observe that different rules
may prescribe different behaviors when the sample ac-
cesses the same information through distinct operations
(e.g., using different APIs). This is a deliberate design
feature that enables us to extract insights on a sample’s
implementation for potential integrity checks on the en-
vironment. Through subsequent mutations, our approach
can achieve eventual consistency by having a policy where
coherent rules regulate all distinct accesses to the item.

Optionally, mutations may benefit from internal cov-
erage information on recorded data flows. For exam-
ple, recording strings or byte sequences that the sample
supplies to comparison functions may provide clues on

elements that a mutation can hide or materialize in values
produced by the system, analogously to the input-to-state
correspondence analysis of [25] for overcoming fuzzing
roadblocks. However, we found no benefits from enabling
this strategy with the samples we tested (and therefore we
disable it by default), as the process we described above
for generating execution policies could apparently already
handle their queries. Nevertheless, this strategy may be
helpful with some targeted malware or other complex
cases that expect specific values in structured outputs.

3.3. An Efficient Fuzzer for Environments

The elements presented in the previous two sections
enable us to bridge most of the existing gap for applying
the concept of fuzzing to the analysis of untrusted soft-
ware with potential environment-sensitive behavior. In the
following, we detail a possible design for a fuzzer that,
leveraging both elements, can effectively discriminate and
in turn efficiently explore a plurality of execution paths
to unveil environment-sensitive behavior from malware.
Figure 1 succinctly depicts the operation of PFUZZER.
An Atypical Fuzzer. Existing fuzzer designs cannot di-
rectly take on malware samples for analysis for a number
of reasons. As we discussed, in an adversarial setting,
conventional feedback schemes such as code coverage can
lose efficacy. However, a good sensitivity of the feed-
back scheme is essential for effectively deploying modern
fuzzers. We thus presented a mechanism that can effec-
tively capture progress (and drive policy mutations) as we
recognize and eventually counter multiple fingerprinting
attempts. As we discuss next, this helps us mitigate the
risks that the fuzzer is led astray by adversarial patterns.

Next, while programs that normally undergo fuzz
testing have well-defined input sources, for malware we
proposed the concept of execution policy as a unifying
umbrella to interpose on program accesses to multiple
variable sources of environmental information and al-
ter their normal course. By modifying the environment
the sample perceives, we may force it to take different,
environment-sensitive execution paths without having to
modifying or analyzing its code. The collected coverage
information on the issued queries guides, in an adaptive
and automatic fashion, the selection of what parts of the
environment we may try to alter for the next runs.

While the two elements above can enable us to build a
fuzzer that can effectively elicit and differentiate execution
behaviors, there are a few design choices to make in order
to ensure that the fuzzer is also efficient. These choices
will be the focus of the remainder of this section.
Epochs and Policy Generation. Classic coverage-guided
fuzzers derive test cases from one another through muta-
tions: while they expose the derivation history (for exam-
ple, through filename conventions in AFL-style fuzzers),
they typically allow mutations to do unrestricted changes
to the test case structure. This choice may be inefficient in
our scenario, as we may lose track of, and inadvertently
undo, mutations that contributed new coverage.

Our design evolves execution policies, which are our
equivalent of test cases, in distinct epochs. We try to strike
a balance between exploration (i.e., reaching and recog-
nizing new behaviors) and exploitation (i.e., keep mutating
fruitful policies hoping to unveil further behaviors).



Figure 1. Workflow of PFUZZER: deriving new execution policies and checking the coverage feedback for retaining interesting policies in the queue.

At each epoch, we select one policy from the queue of
policies the fuzzer maintains and derive new policies from
it. Each epoch has a budget of executions to attempt and
a time limit. A new policy inherits the set of rules from
its parent. Then, we extend the set by choosing nondeter-
ministically, for each access to environmental information
recorded in the policy’s coverage annotations, whether to
apply one mutation from those applicable to the access.

For each generated policy, we run the sample and col-
lect coverage information, looking for novelty compared
to the plurality of past executions, using a coverage map to
distinguish such novelty. If a policy brings new coverage,
we add the policy to the queue. Once the budget runs out,
the fuzzer enters a new epoch and the process restarts.

Scheduling. The fuzzing process starts with an empty
execution policy or optionally with one supplied by a
human operator (e.g., the result of a previous analysis).
For all the epochs that follow, the scheduling algorithm
for selecting a policy from the queue plays a key role for
efficiency. For each policy we retain in the queue, we use a
significance score to prioritize the selection and an energy
score for defining the budget for the epoch if selected.

As we discussed, each epoch can generate one or more
policies due to novel coverage. The significance score of
such a policy is the weighted sum of external coverage
for changes to the system, external coverage for environ-
mental information accesses, and internal coverage:

w1 ∗ actionssys change + w2 ∗ actionsquery + w3 ∗BBs

counting unique actions of a kind and covered basic
blocks BBs. Weights decrease in value from w1 to w3:
the rationale is to favor, as a proxy for progress, activity
that is externally observable and more conspicuous.

Then, at the end of an epoch, we sort any newly added
policies by significance score, then further increase this
score for the top ranked ones (top-2 in the implementa-
tion) and decrease it otherwise. We assign energy scores
following the same order, with higher budget for the top
ranked policies and equal budget for the others, if any.
The rationale is to favor policies that bring other coverage
compared to their parent, but limiting the risk of biasing
future exploration to prioritize all such related children.

The energy score of a policy defines the possible
budget for an epoch if selected. At the end of the epoch,
we reduce the policy’s energy score to account for the
exploitation (i.e., mutation) work attempted on the policy
at hand. Therefore, we may eventually be left with policies

with high significance score but depleted energy scores,
which will lead the fuzzer to pick other policies.

When no policy has energy left, we process the queue
and assign policies with a predefined energy score, starting
with those from older epochs. This approach facilitates
backtracking by giving the fuzzer another chance to revisit
previously fuzzed policies, hoping to uncover new execu-
tion paths through possibly different choices of mutations.

3.4. Implementation

Our design requires interposition capabilities for ac-
cesses to environmental information and tracing capabili-
ties for internal coverage. For practicality, we implement
PFUZZER using dynamic binary instrumentation (DBI).
We choose the DynamoRIO [26] framework over Intel
Pin [27] as, in our experience, Pin has higher startup
latency with just-in-time compilation of a sample’s code.

To focus exclusively on a sample’s actions, we use an
interval tree as in [28] to ignore API calls and low-level
instructions issued within OS library internals. We then
use call-site information to discriminate multiple invoca-
tions of an action from different places in the sample.
Coverage. For interposing on accesses to environmental
information, we target a selection of 68 APIs (counting
A/E/ExA/ExW variants as one) that prior work [6], [7]
deems as relevant. When applicable, we track relevant ar-
guments (e.g., output buffers) to alter when fuzzing. These
APIs cover multiple environmental information sources,
including but not limited to files, processes, registry,
drivers, hardware strings, time sources, and networking.

We also instrument cpuid and rdtsc instructions,
as they expose device and temporal information that mal-
ware notoriously uses for fingerprinting [6]. We ignore
other instructions, such as int and popfd, popular in
anti-debugger detections, as those would pertain to possi-
bly imperfect instrumentation from the DBI engine2.

For tracking transient or permanent changes to the
machine state, we monitor 146 APIs that we obtain from
a popular source [30] by applying slight refinements.

For internal coverage, similarly to standard fuzzers,
we maintain a map for each execution and one that
cumulatively accounts for all the basic blocks traversed in
previous runs. Upon execution completion, we compare
the two maps to recognize if the policy unveiled at least
one new basic block compared to all other policies. For

2. Such gaps are more rare in DynamoRIO than in Pin [29].



simplicity, we use these maps also to detect when new
APIs falling under our categories of interest are invoked.
Mutations. To regulate the course of an environmental
information access, we implement four general operators:

• Normal course: the access operates normally;
• Force success: if an access would normally fail

(e.g., a file does not exist), make provisions so it
can succeed (e.g., rewire it to a dummy file);

• Force failure: the converse of the previous case;
• Retarget: replace a value pertaining to the access

with a different, meaningful one (i.e., a value that
induces feasible execution outcomes3). Depending
on the nature of the access, this value can be an
input parameter or an output element (e.g., a name
appearing in an output list of running processes).

We apply mutation operators by considering only
those sound for a given operation (that is, the OS may al-
low this outcome on a different machine). For example, if
a sample queries the username with the GetUserNameA
API, we can only allow its normal course or retarget its
output to show a different username string.

For time-related operations, we use dedicated opera-
tors to alter the course of delay primitives (zeroing or
rescaling the quantities) and the elapsed time from query
operations (to artificially materialize the expected delays).
Unlike [6] and most sandboxes, we do not follow a fixed
strategy, but at each run we nondeterministically choose
(and record) if to apply adjustments and in what amounts.
Execution. To orchestrate executions, we use one driver
process that creates (and destroys upon timeout) a new
process for each run of the sample. This choice, although
not ideal for fuzzing throughput4, preserves execution
soundness. When a samples has derived execution flows,
such as child processes, we interpose on their accesses
to environmental information and use the same mutation
rules encoded in the policy for the initial process.

3.5. Discussion

Our approach aims to enable practical multi-path ex-
ecution of malware through the coverage-guided fuzzing
paradigm. To deal with environment-sensitive behaviors,
we propose a feedback mechanism sensitive to different
sources of progress (new environmental queries, new con-
spicuous actions, new code executed) and use it to conduct
a biased exploration of the space of countless alternative
environments. This process unveils “faulty” environments
where the sample hides its true colors, as well as “right”
environments where its intended activities unfold, possibly
with significant differences between right environments.

Significance scores allow us to prioritize execution
policies by analyzing properties of their coverage novelty,
while energy scores let us balance the exploration among
multiple meaningful alternative scenarios if present. This
design makes our approach valid not only for evasive
malware (for which typically just one “right” path exists),
but also for samples exhibiting a variety of behaviors
influenced by environment-related factors. As several re-
searchers find this diversity to be commonplace in much
malware [1], [31], [32] but current “single-path” systems
miss it, our approach may also benefit downstream tasks
like classification that we do not consider in this study.

As our experimental analysis will show, PFUZZER
shows to be practical and effective, outclassing other
solutions against evasive malware and revealing additional
behaviors for samples that already show malicious activity
in a baseline run. In this paper, we do not claim to have
solved the malware evasion problem: as we discuss next,
PFUZZER comes with implementation and design aspects
that adversaries may try to target. Our goal is to show that
coverage-guided fuzzing can be a solid and profitable new
approach to multi-path analysis, avoiding the major road
blockers of existing designs proposed for it (Section 2).
After our paper, other works may follow and evolve its
core concepts with additions and improved techniques.

Limitations. We acknowledge the following limitations.
In a practical setting, every dynamic analysis has a

time budget. Adversaries aware of our design may de-
ploy stalling sequences not based on delay primitives.
The problem is general, but such procrastination may be
detected [34] and a better implementation could use live
snapshots instead of starting all runs from the entrypoint.

Whereas the fuzzing entropy takes care of selecting
what APIs to mutate and with what values, we rely on
(limited) expert knowledge for compiling a list of APIs
and their relevant arguments for mutation. An adversary
may target an API not in our list. While adding new
APIs is simple, this can be automated in two ways.
One extension may look up prototypes and try to blindly
mutate new APIs observed at runtime. A smarter version
may leverage large language models to parse the MSDN
documentation and identify what invoked APIs are related
to the environment and synthesize sound inputs for them.

Researchers explored anti-fuzzing techniques to im-
pede security auditing [35], [36]. With existing methods,
our design either counters them (as with SpeedBump [35],
BranchTrap [35], and fake code [36]), or is unaffected due
to differences in feedback and expected outcomes (i.e.,
crashes). Nevertheless, adversaries may eventually devise
techniques tailored to specific implementation choices, or
uncover a general assumption that PFUZZER depends on;
we failed to identify obvious cases at the time of writing.

Finally, our method may struggle with malware that
expects very specific values in outputs that are not general
(e.g., a particular username) and with malware that relies
on indirection (meaning such values should appear within,
for example, files that it opens). For the former, Sec-
tion 3.2 discusses how internal coverage for dataflow facts
may expose these values to our mutations through input-
to-state correspondence [25]. For the latter, we believe
our approach could be extended to model indirection and
expose these contents to the fuzzer’s inner workings.

As for implementation limitations, DBI is notoriously
imperfect for transparency [37], although many use it
to analyze evasive malware (e.g., [2], [3], [6], [38]).
We did not attempt to patch conspicuous traits of Dy-

3. When the set of possible outputs is limited (e.g., keyboard layouts),
PFUZZER draws replacement values from (partial) lists of values em-
bedded in its implementation. For collections (e.g., list of processes) or
resources, it selects from predetermined entities (e.g., fixed strings, paths
to typed decoy files). For simpler cases (e.g., GetCursorPos), it chooses
values randomly within ranges permitted by the argument semantics.

4. Fuzzing mechanisms like forkservers or snapshots [33] would help
but embodiments for Windows user code are currently missing or far
less mature than on Linux. We are confident this will change in future.



namoRIO [29], also because the samples we tested stress
them much more rarely (if at all) than what expected with
Pin’s defects [6]. However, with adequate engineering
effort, PFUZZER can be ported more transparent schemes,
for example atop modified hypervisors [39]. Our goal was
showing that the fuzzing angle is feasible and profitable.

Similarly, adversaries may try to hide API calls using
exotic techniques [40] or target corner cases that our
mutations miss (e.g., with new timing attacks). We expect
implementation additions would mitigate these threats.

4. Dataset Construction

Challenges. A notable challenge in malware research
is the difficulty to establish a ground truth for analysis
tasks on real-world samples. This is particularly true for
environment-sensitive malware, for which notable works
that study the evasion phenomenon [2], [38] or propose
systems to combat it [6] typically draw conclusions based
on indicators collected by an analysis system for one
execution of each sample. A pitfall of this approach is
that, without knowing what techniques each sample em-
beds, evaluations can accurately estimate only the relative
performance of multiple systems, and not the general
effectiveness of a specific method under scrutiny.

With manual reverse engineering currently represent-
ing the only accurate means to recover such information,
building a sizeable annotated dataset for evaluations at
scale remains an open challenge for security researchers.

To mitigate this gap and foster future research in the
area, we built a curated dataset of 1078 PE32 samples with
environment-sensitive behavior. Each sample underwent
manual scrutiny and comes with the list of behaviors
(evasive and post-evasion) from our multi-path analysis
or, if its results were inconclusive, with our findings from
manual reverse engineering of what impeded its analysis.

Our dataset size means to strike a balance between
the expensive manual reverse engineering process and
the significance of the collection. The size is comparable
to what state-of-the-art work [6] on combating evasions
uses with manual result review, but comes with a greater
heterogeneity (e.g., we avoid skewing effects from near
duplicates, present instead in [6] as recently noted in [7]).

Collection. Our dataset includes samples collected in the
wild between 2018 and 2023 from two main sources. We
start from the VirusTotal Academic dataset, which offers
samples first spotted in the wild between 2018 and 2021
and flagged as malicious by at least 15 anti-virus products
in use to VirusTotal. For more recent years, we turned to
the Bazaar collection from VX Underground, a dataset
updated on a monthly basis with samples collected and
reported as malicious by industry professionals.

We start from 315,231 samples and apply a number of
filtering steps to identify and retain environment-sensitive
samples to form a collection as rich in heterogeneity as
possible while also tractable in size for manual inspection.

The first filtering step is to identify possible near-
duplicates using structural analysis. We rely on the vhash
value, an in-house similarity clustering algorithm value
that VirusTotal uses for structural comparisons. After this
step, we are left with 71,151 samples (including 2,908 for
which VirusTotal has not computed a vhash value yet).

The second filtering step is to retain samples with con-
spicuous traits that hint at environment-sensitive behavior.
This step is necessary as not all malware is environment-
sensitive: we chose to prioritize, as in prior studies [6],
samples that show these traits to pattern-based static anal-
ysis5. We start from public Yara rules [41] for detecting
anti-analysis behavior and enact the following actions:

1) By testing all rules, we are left with 40,189
samples (56.48%) matching at least one rule;

2) We remove samples matching only rules for anti-
debugging behavior, as they have limited appeal
for our purpose. Evasions exclusive to debuggers
(e.g., mishandling of single-step exceptions) tar-
get implementation gaps in the monitoring tech-
nology: the correct behavior is the same for any
malware analysis system, and enforcing it upon
divergence is a one-time implementation effort.
This choice leaves us with 12,341 samples.

3) We adjust the rules to remove patterns for specific
sandboxes or hardware fingerprints of hypervi-
sors other than VirtualBox as they would not af-
fect our test environment (Section 5). We are now
left with 15 rules for queries about drivers, files,
firmware strings, hardware features, libraries, and
processes, and a total of 2,018 samples.

The third filtering step involves looking statically [42]
for samples (163) written in managed languages such as
.NET and removing them, as done in other studies [2].
This is because analyzing managed languages rather than
native code poses challenges orthogonal to our purpose6.
At this point, we are left with 1,855 samples.

The fourth filtering step involves balancing over-
represented malware families. We cluster samples into
families using AVClass [43], [44] and limit to 10 the
number of samples per family in each year. Additionally,
we limit the number of occurrences within families (and in
the remaining unlabeled samples) of executable shielded
by the same executable protector, using also version infor-
mation to differentiate protectors when available. We use
the fingerprints of [42] to identify such protectors. At this
point, we are left with 1,262 samples from 239 families.

The fifth and final filtering step involves dynamic ex-
ecution of the samples to identify cases overlooked by the
static analysis tools we used. In particular, we spot another
16 .NET samples. Additionally, we identify 46 samples
that run 64-bit compiled code, albeit they are marked 32-
bit in their original dataset. Due to their spurious nature
in otherwise heterogeneous, large collections of 32-bit
malware, we remove these as well. The resulting dataset
contains 1200 likely environment-sensitive samples.

During the last step, we also identify 122 samples that
hit two peculiar implementation defects of DynamoRIO.
While we reported these DBI cache coherency bugs to its
maintainers, they have not been solved to date. We found

5. This choice can lead us to exclude samples with environment-
sensitive activity missed by the patterns. However, the alternative would
be to retain and examine manually both code and run-time activities of
many more samples, which would be an untenable effort for our purpose.

6. For our design, we would have to add provisions for tracking inter-
nal coverage within CIL bytecode in the runtime and filtering out API
calls not originating from CIL bytecode. Nevertheless, in preliminary
experiments with our (unmodified) system, we tested .NET samples with
results consistently better than with the systems we test in this paper.



that all these samples are shielded with the Themida pro-
tector using a specific option selection. For our evaluation,
we preferred to leave out these sample from the dataset.
However, we refer interested readers to Appendix D,
where we show how a partial porting of our approach to
Pin already handles most of those samples successfully.

Overall, our final dataset features 1078 samples, with
138 unlabeled and 940 attributed to one of 239 families.

5. Evaluation

Using the samples from our dataset, we estimate the
capabilities of PFUZZER by conducting a set of experi-
ments to answer the following research questions:

• RQ1: Can our approach expose environment-
sensitive behavior in real-world malware?

• RQ2: What is the performance of PFUZZER com-
pared to state-of-the-art solutions?

• RQ3: How can PFUZZER build environments with
the very characteristics samples are sensitive to?

• RQ4: What alternative behaviors can we observe
for a sample when analyzed in PFUZZER?

Analysis Environment. To conduct the experiments, we
follow state-of-the-art practices (e.g., [6], [45]) to assem-
ble virtual environments with characteristics and wear-
and-tear state as realistic as possible, including but not
limited to applications, documents, and usage history.

We use Windows 10 64-bit version 1803 with English
as system language. To remove potential hurdles for some
samples, we disable the User Account Control (UAC),
enable the Administrator account, and run each sample
with elevated privileges. To prevent potential harm, we
disconnect the machine from the internet and deploy, as
commonly in the field, a local subnet with a network sim-
ulator on a REMnux VM using INetSim and PolarProxy.

We run our experiments on a physical server equipped
with an Intel Xeon CPU E5-2620 v3 @ 2.40GHz CPU,
48 GB of RAM, Linux OpenNebula with kernel 5.4.0. We
deploy 5 sibling VMs built as above, assigning each with
2 CPU cores and 4 GB of RAM. We start the analysis
of each sample from a common live VM snapshot, taken
with negligible background activity ongoing in the VM.
We use VirtualBox 7.0.10r158379 to host these VMs.
Conspicuous Activity. To estimate the behavior detection
capabilities of the systems we test, we build an automated
metric to recognize conspicuous activity that we can at-
tribute with confidence to malicious behavior. With this
metric, we seek to automate a semi-qualitative assessment
of recorded activity, mimicking the work of professionals
when writing reports and avoiding quantitative assess-
ments based on uninformed API counts as in [7] as they
can be severely misleading (Appendix A). Due to space
limitations, we refer to Appendix B and to the evaluation
materials for a richer explanation of the method. In short,
we mine execution logs for a subset of the 146 APIs
(Section 3.4) behind system changes for external coverage,
prioritizing APIs we can most strongly associate with
malware activity. We complement this with an analysis
of patterns indicative of specific malware behaviors (e.g.,
injection, persistence), taking into account API sequences,
parameters, and frequency of invocation. The output is list
of relevant conspicuous activities in a given execution.

5.1. RQ1: Unveiling Additional Behaviors

In the following, we study how PFUZZER can expose
environment-sensitive behaviors of a sample compared to
a baseline run in the same machine. For each sample, we
allocate a budget of 10 minutes for the analysis, allowing
up to 55 seconds (Section 5.3 discusses this choice) per
single execution and leaving up to 5 seconds for log
analysis and snapshot restoration. We choose 10 minutes
to target the upper limit for how malware analysts use
automatic sandboxes. With this budget, we are guaranteed
to perform at least 10 different executions, including the
baseline run. In our experiments, though, we typically
observe many more (we measure them in Section 5.3)
due to earlier termination along evasive paths.

Table 1 reports the breakdown of the results for the
dataset according to the additional behaviors we identify
when fuzzing. We qualitatively group the samples by the
conspicuous activity they achieve across all runs in the
mutated environments. As conspicuous, we consider what
we obtain from our evaluation metric that qualitatively
analyzes transient and permanent effects on the system
from malware execution. We identify five groups:

• No extra activity. Baseline run shows conspicuous
activity, fuzzing does not expose more of it.

• Mild additions. Baseline run like above, fuzzing
exposes new conspicuous activity but we cannot
pin it to general behaviors not surfaced before.

• Strong additions. Baseline run like above, fuzzing
exposes conspicuous activity that clearly speaks of
behaviors (e.g., injection, keylogging, persistence,
network connections) missing in the baseline run.

• Highly evasive. The baseline shows no conspicu-
ous activity, fuzzing exposes conspicuous activity
that we can pin to typical malware behaviors.

• Inconclusive. The baseline run shows no conspic-
uous activity, fuzzing may expose alternative paths
but none shows significant conspicuous activity.

The baseline run is the initial 55-second execution
in PFUZZER with an empty execution policy. When we
identify new activity, we repeat and extend the baseline
run to 8 minutes to validate that we did not miss such
activity because of a too short baseline execution.

Samples with No extra activity account for 31.91%
of the dataset. However, our method is valuable for their
analysis: as we show in Section 5.4, while our machine
does not trigger their evasive tactics, PFUZZER shows for
70.64% of them alternative paths that lead to evasion (e.g.,
when an analysis tool is running): knowing about their
existence and what triggers them is a valuable finding.

Samples with Mild additions account for 13.17% of
the dataset (142 samples). As notable new behaviors, we
mainly observe file (113 samples) and registry manipu-
lations (37), and occasional system service changes (3).
These are unlikely to show in single-path analysis systems.

Samples with Strong additions account for 15.68% of
the dataset. We find them particularly interesting, as they
often unveil behaviors that are completely missing in the
baseline run. Section 5.4 will analyze their nature in detail.

Samples in the Highly evasive set show little to none
activity in a baseline run and account for 13.54% of the
dataset. We consider them highly evasive as, besides a few



Category Samples
No extra activity 344 (31.91%)

457 (42.39%)
Mild additions 142 (13.17%)
Strong additions 169 (15.68%)
Fully evasive 146 (13.54%)

Inconclusive
277 (25.69%)

Cmd-line arguments 11 (1.02%)
DynamoRIO bugs 19 (1.76%)
External dependencies 51 (4.73%)
PoC evaders 5 (0.46%)
Interactive 49 (4.54%)
Unable to start program 67 (6.21%)
Undetermined evasions 75 (6.95%)
Total 1078

TABLE 1. BREAKDOWN OF SAMPLES BY ADDITIONAL BEHAVIORS
EMERGED VIA FUZZING AND CONFIRMED BY MANUAL ANALYSIS.

file manipulations (Section 5.4), they do not cause changes
to system state. They may tip off a classic analysis system
for the environmental queries they make, but the analysis
(besides dubbing them suspicious) would be inconclusive.

These numbers suggest us that, for malware authors,
environment-sensitive tactics are not necessarily (and of-
ten are not) a one-time decision before showing conspic-
uous behaviors. If existing “single-path” systems were to
analyze the samples we classify as with mild or strong
additions, they would likely report them as malicious to
users, but with an incomplete output that leaves the iden-
tification of these additional behaviors to manual work.

Overall, our method reveals additional conspicuous
behaviors for 42.39% of the dataset (457 samples). No
action is apparently required for 31.91% of it (344), but
the analyses for RQ4 will prove this hypothesis wrong.

We term Inconclusive the remaining samples (277) as
we were unable to see conspicuous behaviors for them.
These account for 25.69% of the dataset. We conducted a
manual analysis to determine which of these samples we
fail to analyze due to limitations of PFUZZER.

We identify 19 samples triggering DynamoRIO bugs
and 75 samples for which we suspect evasion activity but
neither our analysis nor reports from sandboxes in our
availability revealed sufficient details on the employed
techniques. Overall, limitations of PFUZZER affect only
94 of the tested samples at most (8.72% of the dataset).

Most of the remaining 183 samples (17.07% of the
dataset) require user interaction (e.g., filling text forms or
using installers), specific command-line arguments for the
executable, or external dependencies (configuration files,
DLLs typical of videogames, specific network traffic); the
rest may fail to start (corrupted files or run-time Windows
errors) or be innocuous PoC evaders sent to VirusTotal.

The analysis of these samples requires provisions or-
thogonal to our goals and to comparable solutions. To the
best of our knowledge, for some challenges (e.g., external
dependencies with files and DLLs) the malware analysis
community has yet to propose methods to tackle them.

However, all these samples are representative of mal-
ware in the wild. We include them in this experiment
to avoid over-claiming the efficacy of PFUZZER, and
annotate them in our dataset to hopefully ease endeavors
from researchers working on the challenges behind them.
Appendix C provides further context for these samples.

To conclude the analysis of the research question, we
studied the per-family variability of the capabilities of

PFUZZER discussed above. We found that, for the samples
we keep in the dataset for them, the majority of families
(69.04%) fall within a single category. When a family
has samples in multiple sets, the most recurrent sets are
those with mild and strong additions: at a first look, this
suggests that such families tend to show environment-
sensitive behavior that is not strongly related to evasion,
but rather comes from behavioral variability [1], [32].

5.2. RQ2: Comparison against State-of-the-art

In this section, we compare the performance of
PFUZZER against two systems: BLUEPILL and ENVIRAL.

BLUEPILL [6] is a state-of-the-art solution for building
increasingly transparent analysis environments via fake
answers based on expert knowledge. In case studies with
highly evasive malware, its authors claim performance on
par, and at times better, with commercial sandboxes.

ENVIRAL [7] lies between the approaches of PFUZZER
and BLUEPILL. While its authors present it as a fuzzer,
the system speculatively evolves a single path in repeated
executions using predetermined answers against known
evasions and random outputs for other accesses. ENVIRAL
retains a random output choice if it leads to a higher end-
to-end API call count, without allowing backtracking. Its
authors claim performance superior to BLUEPILL.

In our study, PFUZZER largely outperforms BLUEPILL
and ENVIRAL. Additionally, ENVIRAL is the least perfor-
mant system, in apparent contradiction with the prelimi-
nary evaluation in its paper. As we explain in Appendix A,
its study has three issues: a clerical error when modifying
BLUEPILL, an unsound budget choice for BLUEPILL to
offset DBI overheads, and a coarse-grained evaluation
metric also prone to distortion effects. BLUEPILL’s paper
comes instead with no progress or activity metric.

We use our evaluation metric and compare the two
systems with PFUZZER, focusing on the run that reveals
the highest amount of conspicuous activity. For each
sample, we inspect what environmental queries PFUZZER
manipulates in the run of interest: if the other system does
not have provisions for capturing such a query, we run an
ablated version of PFUZZER where we disable the manip-
ulation. This ablation step is needed only for ENVIRAL
with cpuid and rdtsc instructions, whereas the capa-
bilities of the three systems are functionally equivalent for
intercepting all the API-based queries we recorded.

As both systems natively target Windows 7, we build
for them a Windows 7 SP1 32-bit VM with characteristics
as the Windows 10 one we used before. Then, for every
sample on which PFUZZER outperforms either, we repeat
our analysis on the Windows 7 VM to confirm or reassess
the case (i.e., removing rare OS-dependent discrepancies).

In the comparisons, we do not cover the 183 samples
(Section 5.1) featuring orthogonal challenges that none
of the systems can overcome. However, we validated no
relevant differences exist in their analysis reports for them.
BluePill. BLUEPILL does a single-execution analysis. As
it uses Intel Pin, which in our experience has higher initial
latency than DynamoRIO, we cautiously allow it to exe-
cute each sample for 4 minutes, which is about four times
longer than one run in PFUZZER. Then, we analyze if
PFUZZER finds a different amount of conspicuous activity
for the sample than BLUEPILL with our metric.



Category Better Equal Worse
No extra activity 28 315 1
Mild additions 66 76 0
Strong additions 135 34 0
Fully evasive 94 51 1
Undetermined evasions 0 70 5
DynamoRIO bugs 0 12 7
Total 323 558 14

TABLE 2. ACTIVITY FOUND: PFUZZER VS. BLUEPILL.

Table 2 summarizes the outcome of the comparison.
Overall, on 895 samples, PFUZZER finds more activity
than BLUEPILL for 323 samples (36.09% of the total)
and less activity only for 14 samples (1.57%).

To reflect what value PFUZZER can bring for the
analysis, the table further characterizes the results by the
labels we gave to samples when discussing RQ1. The vast
majority of the cases where the two systems are evenly
matched are from the No extra activity group, for which
PFUZZER did not need to counter any tactics. We note
here how the predetermined fake answers from BLUEPILL
introduce a regression 28 such samples: that is, forcibly
altering the normal course of execution at each suspicious
action is detrimental for their analysis7.

PFUZZER largely outperforms BLUEPILL on samples
from the Strong additions (better on 135 out of 169) and
Fully evasive (better on 94 out of 146) sets. We observe
no particular correlation between lower performance and
the year when those samples were first spotted, so we tend
to exclude obsolescence issues for BLUEPILL. We believe
that the superior performance of PFUZZER stems from two
issues that it side-steps by design: (i) even if from accurate
expert knowledge, predetermined fake answers may not
suit all samples, and (ii) aiming to cover all seemingly
adversarial queries with such answers may backfire.

BLUEPILL shows more activity than PFUZZER only
for 5 Undetermined evasions samples, for 7 of the 19
samples that we could not analyze due to occasional
DynamoRIO bugs, and for 2 samples from all the other
groups. For the first 5 samples, we suspect DBI-related
evasions that either BluePill neutralizes through the miti-
gations of [37] for Pin or affect only DynamoRIO [29].
Enviral. For testing ENVIRAL, we allow a total 10-minute
budget as we did for the PFUZZER tests. We set a 25-
second duration per run, with a 10x increase on the
original evaluation settings [7] coherently with the insights
from Appendix A, which shows 2.5 seconds are a poor
choice to characterize behaviors. While its authors granted
BLUEPILL 4x longer runs to offset DBI overheads, for the
same imbalance we give PFUZZER only 2.2x more time
(55 seconds) per run than ENVIRAL (incidentally, this may
potentially let ENVIRAL attempt many more executions).

The left side of Table 3 summarizes the outcome
of the comparison. Overall, on 895 samples, PFUZZER
finds more activity than ENVIRAL for 393 samples
(43.91% of the total, for a 7.82% net difference than with
BLUEPILL) and less activity for 22 samples (2.46%). As
with BLUEPILL, the table characterizes the improvements
with respect to the RQ1 labels we gave to samples.

ENVIRAL introduces important regressions for the
samples that we categorize as No extra activity for
PFUZZER: for 45 of them (13.08% of the group), ENVI-
RAL sees less activity than the baseline run of PFUZZER.

PFUZZER Ablated PFUZZER
Category Better Equal Worse B. E. W. Σ
No extra activity 45 285 14 46 288 17 +7
Mild additions 108 34 0 103 34 0 -5
Strong additions 150 19 0 137 19 0 -13
Fully evasive 90 54 2 68 54 2 -22
Undet. evasions 0 72 3 19 80 9 +33
DynamoRIO bugs 0 16 3 0 16 3 -
Total 393 480 22 373 491 31 -

TABLE 3. ACTIVITY FOUND: PFUZZER VS. ENVIRAL.

This suggests that ENVIRAL interferes with execution and
likely triggers evasive paths. We suspect a mix of analy-
sis overheads, conspicuous traits of its trampoline-based
hooks, and implementation bugs is behind the regression.

On the bright side, ENVIRAL unveils more activity
for 22 samples in the group: by inspecting the nature of
these activities in the logs, they fall under the definition
that we gave in RQ1 for the Mild additions set, this time
built around the results of ENVIRAL. Our explanation
is that ENVIRAL could attempt many more executions
than PFUZZER (due to higher run duration and lower
instrumentation overhead) and thus unveil these paths,
which however PFUZZER may still reach with more time.

PFUZZER largely outperforms ENVIRAL in exposing
additional activities for the Mild (76.06% of its samples)
and Strong (88.76%) groups. We believe this comes from a
design limitation: ENVIRAL continues to evolve the most
promising path and, as explained in its paper, it misses
backtracking capabilities to explore alternative paths. Our
approach relies on energy and significance scores (Sec-
tion 3.3) to shift exploration between multiple directions,
and benefits also from a more sensitive feedback that
combines three sources to pick up indicators of progress.

For the Highly evasive samples, we believe the expert
answers ENVIRAL relies on for bypassing common eva-
sions allow it to match PFUZZER only for those samples
(36.99%) for which the available predefined fake answers
suffice, resulting in a performance similar to BLUEPILL.

To write off an implementation limitation of ENVI-
RAL, we conduct an additional experiment by ablating
in PFUZZER the instrumentation of assembly instructions
(cpuid and rdtsc) precluded to ENVIRAL’s Detours-
based approach. The right part of Table 3 summarizes the
new comparison. To this end, we recompute the labeled
sets as the capabilities of PFUZZER are now reduced;
therefore, the number and identity of samples in each set
can change8. The performance trends remain similarly un-
favorable for ENVIRAL, which makes us conclude that this
implementation limitation is not the main cause for ENVI-
RAL being the least performant system in our study. While
its mixing of expert knowledge and speculative single-
path exploration is interesting, the issues in its evaluation
(Appendix A) and the outcome of the experiments above
suggest that ENVIRAL may still need enhancements.
Sandboxes. Some of our readers may wonder why did not
consider sandboxes in this study. The 146 Fully evasive

7. We noticed a few tricky anti-patterns, for example with BLUEPILL
shortening necessary delay operations (e.g., for thread completion).

8. The Undetermined evasions set now sees further 33 samples for
which the ablated PFUZZER misses conspicuous activity: 22 were priorly
Fully evasive, 5 with Strong additions, and 6 with Mild additions. Other
changes are from 8 samples formerly with strong additions: they become
mild for 1, and none for the remaining 7 (now in the No additions set).



Mild
additions

Strong
additions

Fully
evasive

Total trials in 10’ budget 43.5 47.2 103.7
Policies bringing novelty 18.85 18.73 29.06
Trials until first novelty 6.18 4.06 4.6
Trials until best policy 16.23 17.51 29.22

Mutations in
best policy

Normal course 4.09 3.26 2.56
Force success 2.26 1.78 0.95
Force failure 2.01 1.76 1.00
Retarget 5.75 5 3.73
Alter time 0.61 0.50 0.42

TABLE 4. INTERNAL FUZZER METRICS FOR PFUZZER (AVG).

samples from RQ1 may suit such a comparison, as their
malicious activity shows only if a sandbox counters their
evasions. However, for the rest of the dataset, sandbox de-
signs generally lack the means to automatically tweak the
environment for aspects unrelated to evasion, which were
instead key to revealing additional activity in samples that
show maliciousness already in baseline runs.

For the sake of completeness, we still attempted an
analysis of the Fully evasive samples in a state-of-the-
art open source sandbox with anti-evasion capabilities:
CAPE. We left out commercial products due to their
opaque working, as it would challenge result explainabil-
ity, and license agreements that prohibit benchmarking.

CAPE classifies 67.58% of these samples as mal-
ware, 20.68% as suspicious binaries, and the remaining
11.72% as benign software. Unlike our approach, CAPE
applies also static signatures and other techniques (e.g.,
in-memory analysis) to categorize samples; nevertheless,
it misjudges approximately one every three Fully evasive
samples. Further inspection of the recorded API calls
often reveals fewer behaviors than both PFUZZER and
BLUEPILL do, suggesting its real performance is lower
than what the classification results initially suggested.

5.3. RQ3: Behind PFUZZER’s Performance

In this section, we aim to shed light on how PFUZZER
can build execution policies that meet the characteristics
that the samples in our study are sensitive to. We collect
various metrics on the working of PFUZZER on the 457
samples (Table 1) for which it reveals new behaviors.
Time Sensitivity. Under our per-sample budget of 10
minutes, we analyze what is the impact of the maximum
duration we allow per run on the efficacy of the method.

We variate the duration by 25 seconds, leading re-
spectively to shorter (30 seconds) or longer (80 seconds)
executions. The default choice of 55 seconds (and another
5 for post-processing) ensures we can conduct at least 10
runs: with the shorter duration we can now complete at
least 17 runs, and at least 7 with the longer duration.

As with RQ2, we use our metric for conspicuous activ-
ity to compare the relative performance of PFUZZER. With
the shorter duration, PFUZZER finds the same activity as
in the default setting for 298 samples (65.21%) and less
activity for 158 (34.57%). This shows that shorter runs are
typically insufficient to capture behavior despite PFUZZER
can do many more of them in the given budget. The
additional runs unveil more activity for only 1 sample,
initially in the Mild additions group and now in the Strong
additions one as PFUZZER could continue to evolve a
promising execution policy in the additional runs.

With the longer duration, PFUZZER finds the same
activity as in the default setting for 315 samples (68.93%)
and less activity for 141 (30.85%), which suggests that
longer runs are unnecessary for our dataset. The exception
is 1 sample for which we record new networking activity.
Recent studies [46] show how it is difficult to set the
right threshold for having a “single-path” sandbox collect
sufficient information to classify or study a sample, but
hints that most behaviors are likely observable in the first
2 minutes. We find our evidence promising because, for
these samples, already with 55 seconds we can use what
novelty we observe to deem sufficient progress in terms
of environment-sensitive logic being satisfied. Overall, the
default duration strikes a good balance between what we
can observe in a run for our purpose and how we can
make effective use of the limited budget for all runs.
Internal Fuzzer Metrics. We now study how PFUZZER
uses the time budget to attempt executions, generate poli-
cies, and advance exploration. Table 4 reports the various
metrics we collected, averaging them for samples within
each of the three groups considered for this RQ3 study.

The first element that we observe is that PFUZZER
performs significantly more runs than the lower bound of
10 that the budget allows. This is mainly due premature
execution termination, especially for samples in the Fully
evasive groups, but also when PFUZZER triggers evasive
tactics (absent, for the meaning of the group labels, in the
baseline run) in samples from the two other groups. Less
frequently, some samples conclude their work in less than
the maximum run duration because they injected some
process or spawned a child to continue execution.

We also note that, on average, PFUZZER retains as
novel about 18 execution policies for samples in the first
two groups, and about 29 for Fully evasive ones. Each
policy captures new external or internal coverage com-
pared to the plurality of trials attempted until its creation.
For the first two groups, the policies account both for
additional activity reached and for evasive paths PFUZZER
unveils. The higher number for the third group comes from
the fact that evasive tactics are typically multiple [2], [3]
and may be interleaved with other activity (API calls or
new code). Such activity, when unveiled, is precious for
PFUZZER to retain the policy in the queue and use it in
subsequent exploration to try and meet also the next batch
of environmental dependencies through policy mutations.

Using external coverage on queried environmental in-
formation to drive mutations (Section 3.2) shows here
as an effective choice: PFUZZER needs only a limited
number of trials, on average about 4-6, before unveiling
new coverage. This aspect is valuable because each trial is
expensive (unlike software testing, we cannot do them in
thousands), and reaching novelty fast is key for efficiency.
To reach the configuration with most activity, PFUZZER
takes on average about 16-18 trials with samples from
the two groups with additions, and 29 with Fully evasive
ones (higher likely due to the more complex expectations
to meet). These numbers are way lower than the total
number of runs, revealing that PFUZZER typically finds
such configuration way before exhausting the time budget.

As for rules from policies, the table shows how many
mutations PFUZZER encodes in the execution policy with
most observed activity. The table distinguishes mutations
according to the descriptions we gave in Section 3.4.



Pro
ces
ses

Th
rea
ds

Me
mo
ry

Se
rvi
ces

Ne
tw
ork

Re
gis
try File

s
Cry
pto

0

20

40

60

80

100

%
 o
f s
am

pl
es
 sh

ow
in
g 
ac
tiv
ity

Strong Additions
Baseline
Fuzzing
Common

Pro
ces
ses

Th
rea
ds

Me
mo
ry

Se
rvi
ces

Ne
tw
ork

Re
gis
try File

s
Cry
pto

0

20

40

60

80

100
Fully Evasive

Baseline
Fuzzing
Common

Number of samples
Behavior Strong add. Fully evasive
Communication 66 45
Data wiping 69 40
Encryption 2 7
Injection 6 42
Launching 91 55
Persistence 46 92
Spyware 8 14

Figure 2. Additional activities: type of operations (left) and manually identified behaviors (right) under the best execution policy w.r.t. baseline run.

Two facts stand out most: retargeting an operation is on
average the most recurrent and therefore valuable action,
and leaving (other) accesses to environmental information
unaltered is also very important. The first suggests that
many tactics may not depend only on a binary outcome
for an access but also on its contents; also, retargeting
seems even more valuable for samples that already show
conspicuous activity in the baseline run. The second sug-
gests that altering every query is often unnecessary, and
we argue likely detrimental: it may trigger tactics that do
not affect the current machine (as we saw for BLUEPILL
in Section 5.2) or it may break the operation of the sample.
Unlike existing systems, our approach can discriminate
manipulations by their effects on execution through the
coverage feedback and retain or discard them accordingly.
Environmental Artifacts. Besides how PFUZZER
achieves its performance, an equally compelling question
for defense architects is which aspects of the environment
malware appears to be most sensitive to. We reviewed the
logs to identify the most frequent query types and when
PFUZZER altered execution behavior. Table 5 reports
on samples with Strong additions and Fully evasive by
grouping the most common query types that were altered
in the execution policy that revealed the most activity. We
focus on these two groups due to the wealth of unveiled
behaviors. For both, the most frequent critical operations
are checks on files, existence of registry paths, and time.

With Fully evasive samples, queries for VM-related
conspicuous aspects included files, registry keys, GUI
artifacts, processes, and hardware. We then witnessed how
samples look up files and registry paths for anti-virus
and monitoring software, and ProductID registry values
linked to online sandboxes. Samples showed sensitivity
also to aspects that sandbox users fine-tune manually, such
as executable filename (e.g., presence of the .exe suffix)
and path, working directory, keyboard layout, and installed
programs. We spotted traits such as checking for Active
Setup and Windows Defender settings (and eventually
tampering with them for the latter) apparently missed in
literature [2], [3]. Finally, we observed checks for files
and registry keys that a prior-stage payload should create.

Samples with Strong additions often varied their
tactics depending on conditions and components unre-
lated to evasion. The specific aspects being checked
showed high heterogeneity. A noteworthy case involved
checking for the presence of vulnerabilities (e.g., the

Fully evasive Strong additions
Category Rank Samples Avg # Rank Samples Avg #
File metadata/contents 1 88.36% 5.02 1 92.31% 5.78
Open registry key 2 76.03% 3.93 2 52.07% 4.24
Time/delay check 3 69.86% 1.57 3 63.31% 1.80
Query registry key 4 49.32% 1.90 7 21.89% 1.68
Processes 5 54.79% 1.26 5 51.48% 1.25
GUI elements 6 36.99% 1.74 6 22.49% 2.21
Mutex creation 7 45.89% 1.30 4 56.21% 1.46
Username 8 21.92% 1.31 9 8.88% 1.67
CPU details 9 16.44% 1.00 10 13.02% 1.00
Hostname 10 10.27% 1.40 8 20.71% 1.51

TABLE 5. TYPES OF QUERIES ALTERED IN THE POLICY WITH MOST
ACTIVITY (COUNTS ‘#’ ARE AVERAGED OVER AFFECTED SAMPLES).

acsipc_server named pipe) to enable privilege es-
calation or more stealthy operation. For many of these
samples, we also observed in the logs queries typical of
evasive tactics; however, as these specific tactics did not
expose our baseline analysis environment, the samples
showed malicious activity from the very first run.

For interested readers, in the companion GitHub repos-
itory of this paper we make available a list of the most
relevant environmental artifacts we observed (and avoid
an exhaustive description here for space limitations).

5.4. RQ4: Insights from Alternative Paths

Throughout this section, we seek to answer from mul-
tiple angles our last research question on the nature of the
additional paths PFUZZER unveils: we study the same 457
samples as in the previous section, and separately the 344
No extra activity samples that looked non-evasive in RQ1
but, as we will learn, often have dormant evasive paths.

Due to space limitations, we refer to Appendix B for
an analysis of code coverage variations along new paths.
Types of Activities. We start by looking into the types
of new activities we observe. For samples from the Mild
additions group, we mentioned in Section 5.1 that we
observe manipulations involving predominantly files (113
samples) and the registry (37), and seldomly services (3).

For the other two groups, we collect more fine-grained
indicators to characterize the new activities exposed. We
partition in functional groups the externally observable
operations that PFUZZER tracks and count for each group
for how many samples we witness operations of this kind.
The three per-group bars of Figure 2 include a sample,



respectively, if the baseline run shows operations from the
group, if the best execution policy reveals new operations
from the group, and if any operations from the group show
in both (as opposed to them showing only when fuzzing).

The third bar is helpful to highlight a peculiarity
for samples in the Strong additions groups. For them,
PFUZZER often unveils within a group new operations
that complement or replace others that show for that
group in the baseline run. A “single-run” analysis solution
would overlook these additional facets of a dimension,
as they show based on environment-dependent conditions.
For example, we found a sample that changes its hand-
shake with its C&C server, and one that chooses between
injection and process launching depending on the user
account being in the admin group. A single-run analysis
also trivially misses dimensions that never show in the
baseline run: this happens for all the samples contributing
to the fuzzing bar but not to the third one. This dynamic
is particularly evident with the Threads and Networking
groups, as we record activity of either kind for many more
samples when fuzzing than in the baseline run.

This very dynamic is then dominant for the Fully eva-
sive samples. This is expected, as these samples minimize
their conspicuous activity when they detect an analysis
environment in the baseline run, with the exception of file
manipulations which are not necessarily malicious per se
(that is, most programs manipulate files). Figure 2 shows
how, with these samples, only through fuzzing we enable
and in turn witness activity from the various groups.

We conclude the analysis by manually reviewing the
recorded additional operations and seeing if we can at-
tribute some with certainty to a typical malware behavior.
Figure 2 shows the breakdown for the two groups. In the
Strong additions group, the most recurring behaviors are
launching (via process or service creation), data wiping,
and remote communications. In the Fully evasive group,
persistence is by far the most recurring behavior (this is
expected, as evasive tactics are expected to safeguard such
a conspicuous behavior), followed by launching, remote
communications, and code injection; we remark how all
these behaviors have a conspicuous malicious footprint.

Paths and Queries. To measure the alternative number
of execution paths PFUZZER witnesses for a sample, we
assemble the recorded external coverage activity into a
graph (in general a forest, typically a tree in practice). We
build one graph covering only the actions that bring about
changes to the machine, and one where we include also the
environmental information accesses PFUZZER observes.

With the first type of graph, we record a similar
average number of unique alternative paths for the three
sample groups: 7.76 with Mild additions, 6.46 with Strong
additions, and 7.58 with Highly evasive ones. When we
include the querying activity, the proportion changes:
the number of paths is similar for the first two groups
(respectively, 12.29 and 9.99), but almost twice as high
for the third (22.4). The higher amounts of paths in all
groups relates to the fact that a sample can exercise slight
differences in the querying pathways before reaching a
point where it alters system state. We explain the many
more paths for Fully evasive samples with the existence
of multiple stages of environment-sensitive checks, with
each stage potentially introducing branching points in the

execution. Single-run analysis solutions would miss this
wealth of alternative, feasible executions for a sample.
Samples with No Extra Activity. We conclude by study-
ing the 344 sample with conspicuous activity in the base-
line run and no extra activity in PFUZZER. Their descrip-
tion may suggest that these samples may not be evasive:
in reality, for 243 of them (70.64%), our method can
expose “silent” evasive tactics, which make these samples
valuable for our study. The remaining 100 can either be
false positives from static classification or contain tactics
that our analysis was not able to trigger in the experiment.

For these 243 samples, we identify on average 2.06
accesses to environmental information in the baseline run
that, if altered in their course, steer the sample to evasion
paths. Across all the paths we explore (7.43 paths per
sample), early termination (1.39 paths) is more frequent
than stalling tactics (0.88 paths). For an average of 96.02
external coverage events (either queries or changes to the
system) we witness in the baseline run, we register after
15.22 such events the first access for which, as we altered
it, we witnessed an evasion path. This is coherent with
the common belief of evasive logic appearing already in
(but not being limited to) the early stages of execution.

When analyzing PFUZZER’s output for those samples,
we identified two evasive techniques with no prior public
record. The analysis we did for them became part of the
popular Unprotect knowledge base of evasions [47]. One
technique identifies VirtualBox VMs by scanning network
shared folders through a resource enumeration instead
of the well-established WNetGetProviderName API
call to acquire conspicuous provider names. The other
technique exposes VirtualBox disk drives by issuing a
SMART_RCV_DRIVE_DATA I/O control code to the de-
vice driver, unlike classic serial number or model queries.

6. Conclusion

We have presented PFUZZER, a system embodying a
novel approach to multi-path exploration for environment-
sensitive malware. By proposing and implementing new
fuzzing design techniques tailored around the specificities
of malware, we have shown how coverage-guided fuzzing
can be a promising way to analyze alternative behaviors
from real-world Windows malware, outclassing the state
of the art in academic research. These behaviors may
not necessarily pertain only to evasive tactics, but often
express a behavioral diversity and variability that past
research observed or predicted for much general malware.
We hope the ideas presented in this paper may stimulate
new ideas and uses for our methodology. To favor such en-
deavors, we make available an annotated malware dataset.

Acknowledgments

We thank our anonymous reviewers for their feedback,
Federico Palmaro for his help in the early stages of the
project, Floris Gorter for sharing the evaluation materi-
als for BLUEPILL from the ENVIRAL paper, and Cris-
tiano Giuffrida for several stimulating conversations. This
work has been partially supported by projects SERICS
(PE00000014) and Rome Technopole (ECS00000024) un-
der the MUR National Recovery and Resilience Plan
funded by the European Union - NextGenerationEU.



References

[1] M. Botacin, “Fuzzing and symbolic execution for multipath
malware tracing: Bridging theory and practice via survey and
experiments,” Digital Threats, Oct. 2024, just Accepted. [Online].
Available: https://doi.org/10.1145/3700147

[2] L. Maffia, D. Nisi, P. Kotzias, G. Lagorio, S. Aonzo, and
D. Balzarotti, “Longitudinal study of the prevalence of malware
evasive techniques,” CoRR, vol. abs/2112.11289, 2021. [Online].
Available: https://arxiv.org/abs/2112.11289

[3] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero,
“A systematical and longitudinal study of evasive behaviors in
windows malware,” Comput. Secur., vol. 113, no. C, Feb. 2022.
[Online]. Available: https://doi.org/10.1016/j.cose.2021.102550

[4] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting
environment-sensitive malware,” in Proceedings of the 14th
International Conference on Recent Advances in Intrusion
Detection, ser. RAID’11. Berlin, Heidelberg: Springer-Verlag,
2011, p. 338–357. [Online]. Available: https://doi.org/10.1007/
978-3-642-23644-0 18

[5] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force:
force-executing binary programs for security applications,” in Pro-
ceedings of the 23rd USENIX Conference on Security Symposium,
ser. SEC’14. USA: USENIX Association, 2014, p. 829–844.

[6] D. C. D’Elia, E. Coppa, F. Palmaro, and L. Cavallaro, “On the
dissection of evasive malware,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 2750–2765, 2020.

[7] F. Gorter, C. Giuffrida, and E. Van Der Kouwe, “Enviral:
Fuzzing the environment for evasive malware analysis,” in
Proceedings of the 16th European Workshop on System Security,
ser. EUROSEC ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 8–14. [Online]. Available:
https://doi.org/10.1145/3578357.3589455

[8] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compat-
ibility is not transparency: Vmm detection myths and realities,”
in Proceedings of the 11th USENIX Workshop on Hot Topics in
Operating Systems, ser. HOTOS’07. USA: USENIX Association,
2007.

[9] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and
G. Vigna, “Efficient Detection of Split Personalities in Malware,”
in Proceedings of the 17th Symposium on Network and Distributed
System Security Symposium (NDSS), San Diego, CA, February
2010.

[10] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal
analysis-based evasive malware detection,” in Proceedings of the
23rd USENIX Conference on Security Symposium, ser. SEC’14.
USA: USENIX Association, 2014, p. 287–301.

[11] C. Song, P. Royal, and W. Lee, “Impeding automated malware
analysis with environment-sensitive malware,” in Proceedings of
the 7th USENIX Conference on Hot Topics in Security, ser. Hot-
Sec’12. USA: USENIX Association, 2012, p. 4.

[12] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware
analysis via hardware virtualization extensions,” in Proceedings
of the 15th ACM Conference on Computer and Communications
Security, ser. CCS ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 51–62. [Online]. Available:
https://doi.org/10.1145/1455770.1455779

[13] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster,
S. Vogl, and A. Kiayias, “Scalability, fidelity and stealth in
the drakvuf dynamic malware analysis system,” in Proceedings
of the 30th Annual Computer Security Applications Conference,
ser. ACSAC ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 386–395. [Online]. Available:
https://doi.org/10.1145/2664243.2664252

[14] Z. Deng, X. Zhang, and D. Xu, “Spider: stealthy binary program
instrumentation and debugging via hardware virtualization,” in
Proceedings of the 29th Annual Computer Security Applications
Conference, ser. ACSAC ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 289–298. [Online]. Available:
https://doi.org/10.1145/2523649.2523675

[15] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun,
“Using hardware features for increased debugging transparency,”
in Proceedings of the 2015 IEEE Symposium on Security and
Privacy, ser. SP ’15. USA: IEEE Computer Society, 2015, p.
55–69. [Online]. Available: https://doi.org/10.1109/SP.2015.11

[16] G. Pék, B. Bencsáth, and L. Buttyán, “nether: in-guest detection of
out-of-the-guest malware analyzers,” in Proceedings of the Fourth
European Workshop on System Security, ser. EUROSEC ’11. New
York, NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/1972551.1972554

[17] M. Brengel, M. Backes, and C. Rossow, “Detecting hardware-
assisted virtualization,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, ser. DIMVA 2016.
Berlin, Heidelberg: Springer-Verlag, 2016, p. 207–227. [Online].
Available: https://doi.org/10.1007/978-3-319-40667-1 11

[18] D. C. D’Elia. My ticks don’t lie: New timing attacks for
hypervisor detection. [Online]. Available: https://hdl.handle.net/
11573/1499636

[19] Z. Xu, J. Zhang, G. Gu, and Z. Lin, “Goldeneye: Efficiently
and effectively unveiling malware’s targeted environment,” in
International Symposium on Recent Advances in Intrusion
Detection, 2014. [Online]. Available: https://api.semanticscholar.
org/CorpusID:2138226

[20] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Har-
mon, and X. Zhang, “Pmp: Cost-effective forced execution with
probabilistic memory pre-planning,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1121–1138.

[21] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G.
Bringas, “Rambo: Run-time packer analysis with multiple
branch observation,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, ser. DIMVA 2016.
Berlin, Heidelberg: Springer-Verlag, 2016, p. 186–206. [Online].
Available: https://doi.org/10.1007/978-3-319-40667-1 10

[22] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple
execution paths for malware analysis,” in Proceedings of the 2007
IEEE Symposium on Security and Privacy, ser. SP ’07. USA:
IEEE Computer Society, 2007, p. 231–245. [Online]. Available:
https://doi.org/10.1109/SP.2007.17

[23] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits
of information flow techniques for malware analysis and
containment,” in Proceedings of the 5th International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment, ser. DIMVA ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, p. 143–163. [Online]. Available: https://doi.org/10.
1007/978-3-540-70542-0 8

[24] M. Ollivier, S. Bardin, R. Bonichon, and J.-Y. Marion,
“Obfuscation: where are we in anti-dse protections? (a first
attempt),” in Proceedings of the 9th Workshop on Software
Security, Protection, and Reverse Engineering, ser. SSPREW9 ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3371307.3371309

[25] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and
T. Holz, “Redqueen: Fuzzing with input-to-state correspondence,”
Proceedings 2019 Network and Distributed System Security
Symposium, 2019. [Online]. Available: https://api.semanticscholar.
org/CorpusID:85546717

[26] Dynamorio. [Online]. Available: https://dynamorio.org/

[27] Intel. Pin - a dynamic binary instrumentation tool. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/articles/
tool/pin-a-dynamic-binary-instrumentation-tool.html

[28] D. C. D’Elia, S. Nicchi, M. Mariani, M. Marini, and F. Palmaro,
“Designing robust api monitoring solutions,” IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 1, pp. 392–406,
2023.

[29] D. C. D’Elia, L. Invidia, F. Palmaro, and L. Querzoni, “Evaluating
dynamic binary instrumentation systems for conspicuous features
and artifacts,” Digital Threats, vol. 3, no. 2, Feb. 2022. [Online].
Available: https://doi.org/10.1145/3478520

[30] Malicious apis. [Online]. Available: https://malapi.io/

https://doi.org/10.1145/3700147
https://arxiv.org/abs/2112.11289
https://doi.org/10.1016/j.cose.2021.102550
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1145/3578357.3589455
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1145/2523649.2523675
https://doi.org/10.1109/SP.2015.11
https://doi.org/10.1145/1972551.1972554
https://doi.org/10.1007/978-3-319-40667-1_11
https://hdl.handle.net/11573/1499636
https://hdl.handle.net/11573/1499636
https://api.semanticscholar.org/CorpusID:2138226
https://api.semanticscholar.org/CorpusID:2138226
https://doi.org/10.1007/978-3-319-40667-1_10
https://doi.org/10.1109/SP.2007.17
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1145/3371307.3371309
https://api.semanticscholar.org/CorpusID:85546717
https://api.semanticscholar.org/CorpusID:85546717
https://dynamorio.org/
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1145/3478520
https://malapi.io/


[31] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of
malware downloaders,” in Proceedings of the 9th International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, ser. DIMVA’12. Berlin, Heidelberg:
Springer-Verlag, 2012, p. 42–61. [Online]. Available: https:
//doi.org/10.1007/978-3-642-37300-8 3

[32] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, and T. Dumitras,
“When malware changed its mind: An empirical study of variable
program behaviors in the real world,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 3487–3504. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/avllazagaj

[33] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: com-
bining incremental steps of fuzzing research,” in Proceedings
of the 14th USENIX Conference on Offensive Technologies, ser.
WOOT’20. USA: USENIX Association, 2020.

[34] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of
procrastination: detection and mitigation of execution-stalling
malicious code,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: Association for Computing Machinery, 2011,
p. 285–296. [Online]. Available: https://doi.org/10.1145/2046707.
2046740

[35] J. Jung, H. Hu, D. Solodukhin, D. Pagan, K. H. Lee, and T. Kim,
“Fuzzification: Anti-Fuzzing techniques,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1913–1930. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/jung

[36] E. Güler, C. Aschermann, A. Abbasi, and T. Holz, “AntiFuzz:
Impeding fuzzing audits of binary executables,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 1931–
1947. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/guler

[37] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro,
“Sok: Using dynamic binary instrumentation for security (and
how you may get caught red handed),” in Proceedings of the
2019 ACM Asia Conference on Computer and Communications
Security, ser. Asia CCS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 15–27. [Online]. Available:
https://doi.org/10.1145/3321705.3329819

[38] M. Polino, A. Continella, S. Mariani, S. D’Alessio, L. Fontana,
F. Gritti, and S. Zanero, “Measuring and defeating anti-
instrumentation-equipped malware,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, M. Polychronakis and
M. Meier, Eds. Cham: Springer International Publishing, 2017,
pp. 73–96.

[39] M. S. Karvandi, M. Gholamrezaei, S. Khalaj Monfared,
S. Meghdadizanjani, B. Abbassi, A. Amini, R. Mortazavi,
S. Gorgin, D. Rahmati, and M. Schwarz, “Hyperdbg: Reinventing
hardware-assisted debugging,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1709–1723. [Online]. Available:
https://doi.org/10.1145/3548606.3560649

[40] C. Assaiante, S. Nicchi, D. C. D’Elia, and L. Querzoni, “Evading
userland api hooking, again: Novel attacks and a principled
defense method,” in Detection of Intrusions and Malware, and
Vulnerability Assessment: 21st International Conference, DIMVA
2024, Lausanne, Switzerland, July 17–19, 2024, Proceedings.
Berlin, Heidelberg: Springer-Verlag, 2024, p. 150–173. [Online].
Available: https://doi.org/10.1007/978-3-031-64171-8 8

[41] Yara. Anti-debugging and anti-virtualization yara rules. [On-
line]. Available: https://github.com/Yara-Rules/rules/blob/master/
antidebug antivm/antidebug antivm.yar

[42] Detect-It-Easy. A portable executable analyzer tool. [Online].
Available: https://github.com/horsicq/Detect-It-Easy

[43] Avclass. Avclass - a tool for malware labeling. [Online]. Available:
https://github.com/malicialab/avclass

[44] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A
tool for massive malware labeling,” in International Symposium
on Recent Advances in Intrusion Detection, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:7715150

[45] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and
M. Polychronakis, “Spotless sandboxes: Evading malware analysis
systems using wear-and-tear artifacts,” 2017 IEEE Symposium
on Security and Privacy (SP), pp. 1009–1024, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:12665057

[46] A. Kuechler, A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti,
“Does every second count? time-based evolution of malware
behavior in sandboxes,” Proceedings 2021 Network and Distributed
System Security Symposium, 2021. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:231798972

[47] J.-P. L. Thomas Roccia. Unprotect project. [Online]. Available:
https://unprotect.it/

Appendix A.
Evaluation Issues of Enviral

This section discusses issues that we found in the
method the authors of ENVIRAL used for their preliminary
evaluation for comparing it against BLUEPILL. The eval-
uation included 338 malware samples from 2019 obtained
from the VirusTotal Academic collection and very likely
to be evasive. We attempted a similar experiment using
the 220 samples that we chose with our dataset construc-
tion method from the 2019 archive from the VirusTotal
Academic collection. Coherently with the setup of the
ENVIRAL paper, we run the tests in a Windows 7 VM.

The authors modified BLUEPILL to collect invocations
of noisy APIs (for querying the machine or for altering
its state, with no distinction in importance) and compute
the increment in such activity compared to a baseline run
with the anti-evasion tactics of BLUEPILL disabled. This
choice enables a direct comparison with ENVIRAL, as the
system focuses on evolving a single path that brings an
increase of such activity compared to the baseline run.

For reproducing their experimental workflow, we used
the version of BLUEPILL modified by ENVIRAL’s authors.
We identified three main issues in their work:

1) a clerical error when modifying BLUEPILL for
intercepting execution termination;

2) an unsound choice of the time budget for
BLUEPILL to offset DBI overheads;

3) an imperfect evaluation metric that is also prone
to distortion effects.

These issues explain why the results we presented for
ENVIRAL in the RQ2 experiments are worse than those
for BLUEPILL, and make us conclude that the authors
incorrectly claimed an improved efficacy over BLUEPILL.
Clerical Error. The authors modified BLUEPILL’s orig-
inal code to terminate execution whenever a Windows
exception was triggered and the exception handler of
Pin caught it. However, this approach is problematic be-
cause not all exceptions result in execution failures: with
malware, some may be known anti-debugger techniques.
Additionally, BLUEPILL has specific mechanisms in place
to handle certain exceptions. But most importantly, the
original exception handler of BLUEPILL leaves the sample
under test to manage such exceptions, which is what
anti-debugger techniques expect on a normal execution.
By prematurely terminating execution for BLUEPILL, a
significant amount of observable activity is lost.
Unsound Budget. The authors also modified BLUEPILL
to execute each sample for a maximum of 10 seconds (and

https://doi.org/10.1007/978-3-642-37300-8_3
https://doi.org/10.1007/978-3-642-37300-8_3
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://doi.org/10.1145/2046707.2046740
https://doi.org/10.1145/2046707.2046740
https://www.usenix.org/conference/usenixsecurity19/presentation/jung
https://www.usenix.org/conference/usenixsecurity19/presentation/jung
https://www.usenix.org/conference/usenixsecurity19/presentation/guler
https://www.usenix.org/conference/usenixsecurity19/presentation/guler
https://doi.org/10.1145/3321705.3329819
https://doi.org/10.1145/3548606.3560649
https://doi.org/10.1007/978-3-031-64171-8_8
https://github.com/Yara-Rules/rules/blob/master/antidebug_antivm/antidebug_antivm.yar
https://github.com/Yara-Rules/rules/blob/master/antidebug_antivm/antidebug_antivm.yar
https://github.com/horsicq/Detect-It-Easy
https://github.com/malicialab/avclass
https://api.semanticscholar.org/CorpusID:7715150
https://api.semanticscholar.org/CorpusID:12665057
https://api.semanticscholar.org/CorpusID:231798972
https://api.semanticscholar.org/CorpusID:231798972
https://unprotect.it/


Enviral Bluepill Settings Geomean for activity (as in [7]) Per-sample head-to-head activity count
Time (s) Time (s) Verbose Error BluePill Enviral Increase (%) BP > Enviral Enviral > BP Equal

2.5 10 Off Yes 1.07 1.14 6.54 85 54 81
2.5 10 Off No 1.03 1.14 10.32 61 52 107
2.5 15 On Yes 0.89 1.14 28.54 146 35 39
2.5 15 On No 1.14 1.14 0.10 193 7 20
10 30 Off Yes 1.13 1.23 8.67 114 47 59
10 30 On No 1.29 1.23 -4.77 185 15 20
25 120 Off Yes 1.14 1.25 9.94 104 58 58
25 120 On No 1.24 1.25 0.84 182 15 23

TABLE 6. ANALYSIS RESULTS FOR BLUEPILL AND ENVIRAL ON THE 220 SAMPLES FROM 2019 IN OUR DATASET

up to 15 seconds when in a verbose mode not used for the
evaluation). Unfortunately, these time limits are not ideal
for a DBI-based solution, which faces higher overheads
in the very first seconds of executions (i.e., bringing up
the just-in-time compilation process and filling the code
cache with the firstly executed functions of the samples).
We noticed how it was sufficient to increase the budget
by a few seconds to make it appear in BLUEPILL’s
logs all the additional activity that ENVIRAL showed for
many samples: activity due not to improved anti-evasion
capabilities, but to overhead/timing distortions. We experi-
mented (Table 6) with different budgets to establish a more
fair and sound comparison of the capabilities of the two
systems, and these tests resulted in rather close values for
the two systems for the metric proposed by the authors.
Imperfect Metric. The evaluation metric of ENVIRAL
is the geometric mean of the increase in activity rel-
ative to a baseline execution, with the ratio computed
for each sample with respect to the baseline run of the
respective system. However, focusing on the total volume
of activity is not accurate: for example, an increase in
activity could be due to adversarial techniques designed to
steer the analysis towards dead-end paths. We also noted
that the implementation did not differentiate the point of
origin for such activity between the instructions of the
samples and the implementation of Windows libraries.
We also identified some redundancy in the counts, for
example including both CreateProcessInternalW
and its internal call to NtCreateUserProcess when
intercepting process creation. The metric we use in this
paper focuses instead on conspicuous activity that brings
about transient or permanent effects to the machine and
that originates from the code of the sample only.
Experimental Results. Table 6 shows the results of our
experiments on the 220 samples from our dataset that we
have for 2019. We plot the different settings (time budget
per run, use of the verbose mode for logging activity in
BLUEPILL, presence of the clerical error) we use for the
configurations and two metrics: the one as in the ENVIRAL
paper, and a variant of it where we simply count on each
sample which of the two systems revealed more activity
(i.e., a difference of at least 5% in the count) in terms
of APIs that ENVIRAL deems as important. The results
show that 25 seconds is the budget that leads to the highest
geomean activity increase under ENVIRAL, which justifies
our budget choice in the RQ2 evaluation. They also show
the improvement over BLUEPILL is modest in that setting
(1.25 vs 1.24), whereas the API counts per sample show
that the metric is highly imprecise and skewed: while it
suggests an improvement, only on 15 samples ENVIRAL
finds more activity than BLUEPILL, which instead prevails
for 182 and matches ENVIRAL for 23. For this reason, we

do not use ENVIRAL’s metric for this paper’s experiments.
With our metric for assessing conspicuous activity, we

note neither system finds relevant activity for 39.09% of
the samples. When at least one does, they are equally
matched on 13.64% of the samples, BLUEPILL prevails
on 32.72% of them, and ENVIRAL on 14.55% of them.

Appendix B.
Additional Evaluation Materials

This section features charts and descriptions that we do
not include in the main evaluation due to space limitations.
Evaluation Metric. As we mentioned, our goal is to
enable a semi-qualitative assessment of a sample’s activity,
as opposed to relying on uninformed API counts as in
ENVIRAL [7] (a slippery road, as we discussed in the
previous section) or to manual labeling of activity logs as
in BLUEPILL [6] (expensive and difficult to replicate).

As part of its external coverage feedback, PFUZZER
tracks the identity and callsite for 146 APIs that alter
system state. During the experimental comparison of RQ2,
we added analogous instrumentation to BLUEPILL and
ENVIRAL to track the invocation of these APIs. In the
execution logs we obtain for each execution in one of the
systems (one for BLUEPILL, many for the other two), we
examine the first occurrence of any transient or permanent
system changes, distinguishing APIs by their call site.

As a first indicator, we focus on a subset of these
146 APIs that are most strongly relatable to malicious
activity. For instance, for APIs that pertain to system
service management, we prioritize APIs related to the
creation or initiation of new services, disregarding those,
for example, available for querying service status.

Next, we try to see if we can attribute with confidence
certain system changes to high-level malware behaviors
(e.g., injection, launching, networking, spying). We take
into account API sequences (e.g., for injection, writing to a
region and executing from there), parameters (e.g., known
registry paths commonly abused for persistence), and re-
currence (e.g., cryptographic primitives for ransomware).

The output of this process is, for each run, a list of
the activities we recognize throughout the execution. We
can use these lists to directly compare runs of the same
system, as when attributing sample labels in the RQ1
analysis for the additional activities unveiled, as well as of
different systems, as we did in the RQ2 analysis. We make
available the code (and logs) for the evaluation metric in
the companion GitHub repository of this paper.
Code Coverage. To look into what code different paths
execute, in Figure 3 we measure code coverage variations
between the baseline run and the one with the execution



Step 1 Step 2 Step 3 Step 4 Step 5
Year Initial Vhash Yara Skip dbg Systems .NET Families Dynamic
2018 64 313 18 105 12 043 4 042 586 499 306 281
2019 59 104 12 989 7 588 2 854 510 480 315 295
2020 52 512 16 829 3 555 1 175 203 196 109 104
2021 25 176 6 189 3 841 1 946 362 354 242 213
2022 65 919 8 555 6 261 1 260 186 169 153 97
2023 48 207 8 484 6 901 1 064 171 157 137 88
Total 315 231 71 151 40 189 12 341 2 018 1 855 1 262 1 078

TABLE 7. DETAILED BREAKDOWN OF THE DATASET CONSTRUCTION PROCESS

Fewer blocks E ual amount More blocks
0

10

20

30

40

50

60

70

80

%
 o
f s
am

pl
es

62.68

4.93

32.39

54.44

5.92

39.64

15.75

6.85

77.40 Sample category
Mild Adds
Strong Adds
Fully e%asi%e

Figure 3. Distinct basic blocks that the sample traverses under the first
execution policy unveiling new conspicuous activity w.r.t. baseline run.

policy that makes PFUZZER witness new conspicuous
activity for the first time. We consider the unique basic
blocks a run traverses and differentiate samples by groups.

For samples with Mild additions (142), novelty occurs
on an execution path that traverses fewer distinct basic
blocks than in the baseline run in 62.68% of the cases
(89 samples). This often relates to the sample engaging in
activities alternative to some of those from the baseline
run; alternatively, execution may interleave these new
activities with those showing in the baseline run, but the
fuzzing run times out before the sample can complete
them all. PFUZZER is sensitive to these differences as
it reasons on the identity (API name and call site) of
coverage entities for assessing novelty in the feedback.
In rare cases (7 samples), the blocks are numerically the
same but the identity of some (and possibly the dataflow at
others) change. In the remaining 32.39% of the cases (46),
novelty comes with a higher count of traversed blocks.

For samples with Strong additions (169), the trends are
quite similar and our interpretation is analogous to above,
but the prevalence of cases with higher counts is slightly
higher, totaling 39.64% of the cases (67 samples).

Fully evasive samples (146) show a different dynam-
ics, with higher amounts of traversed blocks as the most
common case (77.40%). This trend is expected, as we
assume these samples tend to terminate execution early
or stall it and, by the definition we gave in RQ1 for the
set, the baseline run triggers their evasive tactics.

Appendix C.
Dataset Details and Inconclusive Samples

Breakdown. Table 7 provides a detailed breakdown of the
dataset construction process we presented in Section 4.

Inconclusive Samples. We then provide more details for
samples that we termed Inconclusive in Section 5.1. As
discussed in the paper, most of these samples present
orthogonal challenges that are beyond the capabilities of
current approaches. We hope to ease future work in the
area by sharing these samples and our analysis notes for
them. These challenges are (see Table 1 for the set counts):

• Command-line arguments: samples that demand
specific command-line arguments for execution.
Using a debugger, we provided arguments ob-
tained through manual reversing work and ob-
served how this steered execution to sections of
code where interesting behaviors occurred. Some
samples accepted a range of arguments, each lead-
ing to different behaviors based on the input.

• External dependencies: samples requiring specific
items, such as DLL files (e.g., steam_api.dll,
lib_game.dll), specific resources not present
in the PE file, a valid network connection (our
simulator was insufficient), or files with particular
content (mainly, configuration like setup.cfg).

• Interactive behavior: These samples include three
behaviors: installers that initiate an installation
process requiring GUI interactions, samples that
trigger malicious activity after one or more user
interactions (e.g., message boxes), and samples
that display a GUI for text input (e.g., keygens).

• Program failures: These samples failed to execute
in our analysis environment due to various reasons,
including faulty applications that triggered error
messages, software unable to run in Win32 mode,
or cases where the OS indicated the application
was incompatible with the system.

On a related note, samples that we dubbed Undeter-
mined evasions exhibit evasive behavior, such as termi-
nating after executing only a few instructions or without
displaying malicious activity. However, we were unable
to identify with certainty the root cause of their evasion.
Many of these cases appear to come from modified ver-
sions of executable protectors, especially Safengine.

Appendix D.
Themida Samples and DynamoRIO’s Defect

In our dataset construction process, we encountered
122 samples shielded by a particular configuration of the
Themida executable protector that hit structural bugs in the
implementation of DynamoRIO. While we reported these
DBI cache coherency bugs to its maintainers (GitHub
issue #6567), they have not been solved to date.

To validate our belief that these samples do not hit a
methodological limitation of our method, we implement a



Category Samples
Fully evasive (and countered) 89 (72.95%)
Undetermined evasions 16 (13.11%)
Unable to start program 13 (10.65%)
Interactive 2 (1.64%)
External dependencies 2 (1.64%)
Total 122

TABLE 8. THEMIDA-PROTECTED SAMPLES HITTING ONE OF TWO
KNOWN CACHE COHERENCY BUGS IN DYNAMORIO.

small-scale version of it in Pin, targeting for fuzzing only
the operations that we witness in a baseline run (more
specifically, cpuid and two variants of RegOpenKey).

Table 8 presents the results of this analysis. For
72.95% of the samples, we successfully bypass the evasive

techniques and uncover significant conspicuous behaviors
according to our evaluation metric. However, 13.11% of
the samples evade detection without revealing noteworthy
behavior, likely due to the presence of additional evasive
techniques for which further investigation is required. The
remaining 13.99% of the samples are akin to the Incon-
clusive samples defined in RQ1 and further discussed in
Appendix C: these samples are faulty executables or ne-
cessitate either external dependencies or user interaction.

These results make us conclude that also these samples
could be handled by our reference implementation of
PFUZZER once the DynamoRIO’s bugs are solved. As this
may require substantial engineering effort orthogonal to
the purpose of this research, we left it to future work.


	Introduction
	Background and Motivation
	Design
	Coverage Feedback
	Mutating the Environment
	An Efficient Fuzzer for Environments
	Implementation
	Discussion

	Dataset Construction
	Evaluation
	RQ1: Unveiling Additional Behaviors
	RQ2: Comparison against State-of-the-art
	RQ3: Behind Pfuzzer's Performance
	RQ4: Insights from Alternative Paths

	Conclusion
	References
	Appendix A: Evaluation Issues of Enviral
	Appendix B: Additional Evaluation Materials
	Appendix C: Dataset Details and Inconclusive Samples
	Appendix D: Themida Samples and DynamoRIO's Defect

